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Abstract

Background: To sustain the critical progress made, prioritization and a multidisciplinary approach to malaria
research remain important to the national malaria control program in Benin. To document the structure of the
malaria collaborative research in Benin, we analyze authorship of the scientific documents published on malaria
from Benin.

Methods: We collected bibliographic data from the Web Of Science on malaria research in Benin from January
1996 to December 2016. From the collected data, a mulitigraph co-authorship network with authors representing
vertices was generated. An edge was drawn between two authors when they co-author a paper. We computed
vertex degree, betweenness, closeness, and eigenvectors among others to identify prolific authors. We further
assess the weak points and how information flow in the network. Finally, we perform a hierarchical clustering
analysis, and Monte-Carlo simulations.

Results: Overall, 427 publications were included in this study. The generated network contained 1792 authors and
116,388 parallel edges which converted in a weighted graph of 1792 vertices and 95,787 edges. Our results
suggested that prolific authors with higher degrees tend to collaborate more. The hierarchical clustering revealed
23 clusters, seven of which form a giant component containing 94% of all the vertices in the network. This giant
component has all the characteristics of a small-world network with a small shortest path distance between pairs of
three, a diameter of 10 and a high clustering coefficient of 0.964. However, Monte-Carlo simulations suggested our
observed network is an unusual type of small-world network. Sixteen vertices were identified as weak articulation
points within the network.

Conclusion: The malaria research collaboration network in Benin is a complex network that seems to display the
characteristics of a small-world network. This research reveals the presence of closed research groups where
collaborative research likely happens only between members. Interdisciplinary collaboration tends to occur at
higher levels between prolific researchers. Continuously supporting, stabilizing the identified key brokers and most
productive authors in the Malaria research collaborative network is an urgent need in Benin. It will foster the
malaria research network and ensure the promotion of junior scientists in the field.
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Background
Malaria remains one of the three major public health
concerns in Sub Saharan Africa where it affects millions
of people and impact negatively on their socioeconomic
life [1]. In the Millenium Declaration, Malaria has been
given a special attention in terms of the successful
achievement of the 6th development goal of the Millen-
ium Challenge [2]. In Benin, initiatives such as the US
President’s Malaria Initiative have supported governmen-
tal and non-governmental organizations to reduce the
mortality and morbidity related to Malaria [3, 4]. With
these financial supports at hand, such efforts in Benin
have led to a sharp increase in public health interven-
tions and many positive public health outcomes in terms
of the reduction of mortality and morbidity related to
Malaria [5]. Such increase in public health interventions
translated in the successful implementation and sustain-
ability of entomological surveillance of malaria for more
than six years since 2008 [6]. Between the years 2000
and 2009, the increase in funding led to an annual de-
crease of 5.2% in the incidence of malaria and 5.3% in
malaria-related deaths [7]. This encouraging success
stories have even motivated other authors to enunciate
the ambitious malaria eradication plan [8].
Despite the progress in malaria, very little is known on

the dynamics of the malaria research collaboration net-
work. This situation results in a lack of information on the
main players and drivers of the progress made. As for the
eradication of chickenpox [9], collaborative research will
undoubtedly play an important role in the successful at-
tainment of the malaria eradication plan in Subsaharan
Africa in general and in Benin in particular. By collaborat-
ing with each other, researchers form continuous and sus-
tainable collaboration through intensive network practices
that go beyond the regional boundaries [10]. In addition,
the fact that the extensive research conducted has not pre-
vented malaria from outpacing the proposed solutions is a
definitive clue to investigating the structure of the malaria
research community. Research collaboration constitutes a
stable basis for the provision of evidence based informa-
tion in the formulation of fundamental principles and
guidelines for the elaboration of public health strategies.
Therefore, we propose in this study, to document, de-
scribe and analyze the different aspects of the malaria re-
search collaboration in Benin.
Understanding the structure of this network is capital

since it can help improve research prioritization [11],
identify prolific researchers, better design, strategic plan-
ning and implementation of research programs [12], and
promote cooperation and translational research initia-
tives [13]. We choose a social network analysis approach
which will reveal undiscovered knowledge on effort of
researchers in working together towards the reduction
of the burden of Malaria in Benin.

Our study focuses on the Network analysis of the sci-
entific collaborations through co-authorship network
analysis. Its aim is to document the structure of the mal-
aria collaborative research in Benin.

Methods
Data collection
The data collection was carried on papers indexed in
Thompson’s Institute for Scientific Information Web Of
Science (formerly known as the Web of Knowledge). The
search was conducted using combinations of Malaria re-
lated MeSH terms including “malaria”, “Anopheles”, “Plas-
modium” and “vector”. We restricted the search to the
period from 1996 to 2016 and to “Benin” for country. We
further screened the papers in order to only select those
published by Beninese authors, or papers published on
Malaria from Benin. All published documents under con-
siderations included at least one Author from Benin. No
restriction was placed upon the document types. We first
started querying with each term independently, we then
combined the other terms so the query return the max-
imum number of results. The Full citations information
containing the authors’ names, their institutional affilia-
tions, the year of publication, as well as the number of
times the document was cited were recorded as a biblio-
graphic corpus in text format. After a second screening
only research that have met the above listed inclusion cri-
teria and that were published between January 1, 1996 and
December 31, 2016 were selected in this study.

Text mining and network generation
From the bibliographic text files, we built a corpus of
the published documents using Tethne v0.8, a python
software for parsing bibliographic data. Using NetworkX
[14], another python package, we generated an undir-
ected multigraph co-authorship networks containing
parallel edges. Vertices were defined by several attributes
including name, affiliation, city, country, number of pub-
lication and total number of times cited. Edges too, had
attributes associated with them such as a unique
identifier, the number of times a pair of authors was
cited and the number of publications of a pair of au-
thors. We normalized and disambiguate the informa-
tion collected such as researchers’ names, research
center denominations, and any other information that
appeared ambiguous.

Author name disambiguation
One common challenge in collecting bibliometric data is
the matching problem. Multiple names can refer to the
same author. A well-known approach to solving this
issue is termed as Author Name Disambiguation (AND).
While many AND methods have been reported in the
literature [15, 16], we performed a fuzzy matching machine
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learning technique of AND. We used Dedupe, a python li-
brary to disambiguate authors’ names and assign a unique
identification number to each author. We manually anno-
tated 10% of the names and then trained the algorithm to
automatically disambiguate the remaining of the entries.
Dedupe is interactive and adjusts further annotations as the
disambiguation process evolves. Dedupe is based on the
work of Bilenko [17] and has been developed by Gregg For-
est and Derek Eder. For more information on Dedupe, we
refer the reader to the author’s Github repository available
at https://github.com/dedupeio/dedupe. We evaluated our
AND fuzzy matching machine learning method by comput-
ing Precision and recall metrics.

Descriptive data analysis
Using igraph, a network analysis package developed in R,
we computed the following vertex centrality measures:

� Degree of the vertices in the network defined as the
number of ties to a given author. After converting the
multigraph network in a weighted graph where weights
are the number of authorships between two authors,
the strength of the vertices was also computed.

� Betweenness: it is the number of shortest paths between
alters that go through a particular author. It relates to
the perspective that importance relates to where a vertex
is located with respect to the paths in the network
graph. According to Freeman [18], it is defined as:

cB vð Þ ¼ σ s; tjvð ÞX
s≠t≠v∈V

σ s; tð Þ ð1Þ

where σ(s, t| v) is the total number of shortest paths be-
tween s and t that pass through v, and σ(s, t) is the total
number of shortest paths between s and t regardless of
whether or not they pass through v.

� Closeness: the number of steps required for a
particular author to access every other author in the
network. It captures the notion that a vertex is
central if it is close to many other vertices.
Considering a network G = (V, E) where V is the set
of vertices and E, the set of edges, the closeness
centrality cCl(v) of a vertex v is defined as:

cCl vð Þ ¼ 1X
u∈V

dist v; uð Þ ð2Þ

where dist(v, u) is defined as the geodesic distance be-
tween the vertices u, v ∈V.

� Eigenvectors: degree to which an author is
connected to other well connected authors in
the network. It seeks to capture the idea that
the more central the neighbors of a vertex are,
the more central that vertex itself is. According
to Bonacich [19] and Katz [20], the Eigenvector
centrality measure is defined as:

cEi vð Þ ¼ α
X

u;vf g∈E cEi uð Þ ð3Þ

Where the vector cEi ¼ ðcEið1Þ;…; cEiðNvÞÞT is the so-
lution to the eigenvalue problem AcEi ¼ α−1cEi , where A
is the adjacency matrix for the network G. According to
Bonacich [19], an optimal choice of α−1 is the largest
eigenvalue of A.

� Brokerage: degree to which an actor occupies a
brokerage position across all pairs of alters.

We also computed edge betweenness centrality
which extends from the notion of vertex centrality
by assigning to each edge a value reflecting the
number of shortest paths traversing that edge. We
calculated edge betweenness to assess which co-
authorship collaborations are important for the flow
of information. In the result section, we present the
10 most important collaborations in the malaria co-
authorship network.

Characterizing network cohesion
The extent to which subsets of authors are cohe-
sive with respect to their relation in the co-
authorship network was assessed through network
cohesion. Specifically, we determined if collabora-
tors (co-authors) of a given author tend to collab-
orate as well, and what subset of collaborating
authors tend to be more productive in the network.
While there are many techniques to determine net-
work cohesion, we chose local triads and global
giant components. In addition, we conducted cli-
ques detection and clustering or communities de-
tection on the network:

� Cliques: According to Kolaczyk and Csárdi [21],
cliques are defined as complete subgraphs such that
all vertices within the subset are connected by edges.
We computed the number of maximal cliques and
assessed their size.

� Density: Defined as the frequency of realized
edges relative to potential edges, the density of a
subgraph H in G provides a measure of how

Azondekon et al. Global Health Research and Policy  (2018) 3:11 Page 3 of 11

https://github.com/dedupeio/dedupe


close H is to be a clique in G. Density values
vary between 0 and 1:

den Hð Þ ¼ j EH j
j VH j VH−1ð Þ=2 ð4Þ

� Relative frequency: we assess the relative frequency
of G by computing its transitivity defined as:

clT ¼ 3τΔ Gð Þ
τ3 Gð Þ ð5Þ

where τΔ(G) is the number of triangles in G, and τ3(G) is
the number of connected triples (sometimes referred to
as 2-star).
This measure is also referred to as the fraction of tran-

sitive triples. It represents a measure of global clustering
of G summarizing the relative frequency with which
connected triples close to form triangles [21].

� Connectivity, Cuts, and Flows: We investigated the
concepts of vertex and edge cuts derived from the
concept of vertex (edge) connectivity. The vertex
(edge) connectivity of a graph G is the largest
integer such that G is k-vertex- (edge-) connected
[21]. These measures helped assess the information
flow in the network. Since co-authorship networks
are undirected graphs, the concept of weak and
strong connectivity was irrelevant in this study. A
graph G is said to be connected if every vertex in G
is reachable from every other vertex. Usually, one of
the connected components dominate the others,
hence the concept of giant component.

� Graph Partitioning: Regularly framed as community
detection problem, we applied graph partitioning to
find subsets of vertices that demonstrate a
‘cohesiveness’ with respect to their underlying
relational patterns. Cohesive subsets of vertices
generally are well connected among themselves and
are well separated from the other vertices in the
graph. Two established methods of graph
partitioning are Hierarchical clustering
(agglomerative vs divisive) and Spectral clustering
[21]. In this study, we applied agglomerative
Hierarchical Clustering to the co-authorship
network.

Mathematical modeling
The purposes of network graph modeling are to test sig-
nificance of the characteristics of observed network
graphs, and to study proposed mechanisms of real-world
networks such as degree distributions and small-world
effects [21]. A model for a network graph is a collection
of possible graphs G with a probability distribution ℙθ
defined as:

ℙ θ Gð Þ;G ϵ G : θ ϵ Θf g ð6Þ

where θ is a vector of parameters ranging over values in
Θ.Given our observed malaria co-authorship network graph
Gobs and some structural characteristics η(·), our goal is to
assess if η(Gobs) is unusual. We then compare η(Gobs) to
collection of values fηðGÞ : G∈Gg. If η(Gobs) is too extreme
with respect to this collection, then we have enough evi-
dence to assert that η(Gobs) is not a uniform draw from G
.Given the computationally expensive calculations involved
in modeling in general, and the expected large size of our
network, we parallelized all the processings.We applied dif-
ferent mathematical models for network graphs including:

� Classical Random Graph Models: First established
by Erdős and Rényi [22–24], it specifies a collection
of graphs G with a uniform probability ℙ(·) over G.
A variant of this model called the Bernoulli Random
Graph Model was also defined by Gilbert [25].

� Generalized Random Graph Models: These models
emanated from the generalization of Erdős and
Rényi’s formulation, defining a collection of graphs
G with prespecified degree sequence.

� Mechanistic Network Graph Models: These models
mimic real-world phenomena and include Small-
World Models commonly referred to as “six-degree
separation”. It was introduced by Watts and Strogatz
[26] and have since received a lot of interests in the
existing literature especially in Neuroscience. Small-
world networks usually exhibit high levels of clustering
and small distances between vertices. Examples of
known small-world networks include the network of
connected proteins or the transcriptional networks of
genes [27]. A variant of Small-World models is the
Preferential Attachment Models defined based on the
popular principle of “the rich get richer”. Examples of
Preferential Attachment networks include that of
World WideWeb [28] and the scientific citation
network [29, 30]. An important characteristic of these
models is that as time tend to infinity, there degree dis-
tribution tends to follow a power law.

For each mathematical model, we ran 1000 Monte-
Carlo based simulations. We then compared the observed
characteristics to the simulated ones thanks to a sample
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Student’s t-test. Characteristics we assess significance for
are the average shortest paths, the clustering coefficient
and the number of communities detected by the hierarch-
ical clustering methods.

Results
Data collection
Of all the different queries formulated, the WOS query
“TOPIC: (malaria) OR TOPIC: (mosquito) OR TOPIC:
(anopheles) OR TOPIC: (plasmodium) OR TOPIC: (net)
OR TOPIC: (vector) Refined by: COUNTRIES/TERRI-
TORIES: (BENIN)” returned 630 records. After a rigor-
ous screening process carried out by all the authors, 424
documents met the selection criteria. On average, there
was 10.67 authors per published document.
After the Author Name Disambiguation, we identified

1792 unique authors with a precision of 99.87% and a
recall of 95.46%. The generated multigraph co-
authorship network therefore contained 1792 vertices
(authors) and 116,388 parallel edges (collaborations).
Each vertex (author) in the network has 2 attributes:
name and a unique identification number. Each edge has
8 attributes: key, subject, abstract, year, wosid (Web of
science Identification number), journal, title and doi
(digital identifier object).

Descriptive data analysis
The degrees of the multigraph network range between 1
and 1338 with an average degree distribution of 106.46.
We noted in addition, a substantial number of vertices
with low degrees (Fig. 1). There was also a non-trivial
number of vertices with higher order of degree magni-
tudes. A log scale distribution of the degrees

demonstrate that the vertex degrees tend to follow a
heavy-tail distribution (Fig. 2).
After we convert the multigraph network in a

weighted graph, it results in a simple graph of 1792 ver-
tices and 95,787 weighted edges. Mean Closeness cen-
trality ranges between 3.118 × 10−7 and 5.152 × 10−6 with
a median of 5.112 × 10−6. This measure suggests a highly
right-skewed distribution. Betweenness measures range
between 0 and 245,600 with a median of 1985. A net-
work visualization with the vertices’ size proportional to
betweenness centrality measures clearly reveals the pres-
ence of broker authors (Table 1). The median Eigenvec-
tors median is 0.005 and a mean of 0.09. Eigenvectors
measures reveal the presence of multiple cluttered au-
thors suggesting the presence of closed collaboration
groups. Table 1 presents a list of the 10 authors with the
highest Eigenvectors values.
The computation of edge betweenness identifies co-

authorship collaborations that are important for the flow
of information. In Table 1, We present the top 10 most
important collaborations for the flow of information in
the Malaria Co-authorship network in Benin.

Network cohesion
A total of 365 maximal cliques are identified in the net-
work among which 9 cliques of size 2, 14 cliques of size
3, 155 cliques of size 8, and 142 cliques of size 7. Larger
maximal cliques sizes range from 102 authors to 365 au-
thors and are all found once across the network.
The malaria co-authorship network has a density of

0.0596 and a transitivity of 0.965 indicating that 96.5% of
the connected triples in the network are close to form

a b

Fig. 1 Degree distribution of the Malaria Co-authorship network
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triangles. The transitivity metrics is a measure of the
global clustering of the network.
The network is not connected and a census of all the

connected components within the network reveals the
existence of a giant component that dominates all the
other connected components. This giant component in-
cludes 94% (1686 vertices) of all the vertices in the net-
work with none of the other components alone carrying
less than 1% of the vertices in the network (Fig. 3).
The assessment of information flow in the network via

cut vertices reveal the existence of 16 authors as the
most vulnerable vertices in the network. Table 1 lists the
authors that constitute the weak articulation points in
the malaria co-authorship network. Cut vertices are cru-
cial to the sustainability of networks [21].
The agglomerative hierarchical clustering method

identifies 23 research communities (or clusters) in the
network. Sizes of the clusters range between 2 and 570
with large research communities containing between
202 and 569 authors. Medium size research communi-
ties contain between 10 and 62 authors. Only seven out
of the 23 research communities identified are part of the
giant component. Figure 3 displays the giant component
of the network with each different colors representing
each of the seven research communities.

Mathematical modeling
The hierarchical clustering method of community de-
tection algorithm has identified 23 different clusters/
communities in the co-authorship network out of
which seven form a giant component. One of the
question of interest in this section is whether the
number of communities detected is expected or not.
We performed 1000 Monte Carlo based simulations
to test the significance of this observed characteristics
on the malaria co-authorship network. Figure 4

clearly demonstrates that the number of communities
detected is unusual from the perspective of both
Classical random graphs and generalized random
graphs (p-value < 0.0001). From the Classical random
graph model, the expected number of communities is
3.934 (95%CI: 3.90–3.97). Similarly, the expected
number of communities from the generalized random
graph model is 7.501 (95%CI: 7.39–7.61).
Figure 5 displays the number of detected research

communities using the Barabási-Albert’s preferential at-
tachment and the Watts-Strogatz models. Supprisingly
enough, the observed number of communities is also ex-
treme per both models (p-value < 0.0001). The expected
number from the Watts-Strogatz model simulations is
3.056 (95%CI: 3.04–3.07) and 45.569 (95%CI: 45.42–
45.72) from the Barabási-Albert model simulations.
We also compared the clustering coefficient and the

average shortest-path length. The observed clustering
coefficient is 0.9645. Surprisingly, there is substantially
more clustering in our malaria co-authorship network
than expected from all 4 mathematical models (p-value
< 0.0001). The expected clustering coefficient is 0.0596
(95%CI: 0.05963068–0.05964648) and 0.4334 (95%CI:
0.4333912–0.4334522) respectively for the classic random
graph and the generalized random graph models. Simi-
larly, The Watts-Strogatz Small World model expected
clustering is 0.7464 (95%CI: 0.7464326–0.7464356).
We observed an average shortest-path length of 2.99 in

the malaria co-authorship network. This observed
shortest-path length is significantly larger than what is ex-
pected from the random graph models (p-value < 0.0001)
and significantly lower than what is expected from Watts-
Strogatz small world model and the Barabási-Albert pref-
erential attachment model (p-value < 0.0001).
The average shortest-path length is 1.94 (95%CI:

1.941955–1.941960) and 2.26 (95%CI: 2.259468–

Fig. 2 Log-Average Neighbor degree Distribution
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2.259586) respectively for the classic random graph and
the generalized random graph models. For the Watts-
Strogatz small world and the BarabÃ¡si-Albert models,
the average shortest-path length is respectively 3.83
(95%CI: 3.81–3.86) and 9.17 (95%CI: 9.14–9.21).
All simulations were also performed on the giant com-

ponent of the network and led to similar outcomes.

Discussion and conclusion
This study provides insights in the structural character-
istics of the malaria co-authorship network in Benin over
a relatively long period. The 20 years of data collected
coincides with the onset of active malaria research from
1996 until December 2016 in the country. The signifi-
cant increase in malaria research and collaborations
(Table 2) between the authors over the years is an ex-
pected finding given the regain and renewed interest in
malaria control and elimination goals set forth [8, 31].
This research shows that the mechanism underlying the
formation of the malaria co-authorship network in Benin
is not random. It further demonstrates that the malaria
research collaboration network in Benin is a complex
network that seems to display small-world properties
(often referred to as “six degrees of separation”).
The non-trivial number of authors with higher order

of magnitudes confirms the presence of closed research
groups where collaborative research likely happens only
among members. In other words, interdisciplinary col-
laboration tends to occur at higher levels between pro-
lific researchers with the majority of the collaborations
happening between researchers from the same scientific
communities. Prominent authors with important collab-
orations tend to collaborate with similar authors, young
or less prolific authors tend to collaborate with both
prolific authors and authors with very few collaborations.
Similar findings were reported by Janet Okamoto [32]
who studied scientific collaboration on a much smaller
scale. Key brokers facilitate scientific collaborations
within and outside their scientific community [33]. Be-
tweenness centrality measures identifies such brokers
who are important hubs for inter and transdisciplinary
research. Many of the main brokers proved to also be
the most connected and the most central authors con-
firming the presence of long publishing tenure authors

Table 1 List of the most important authors and collaborations
in the Malaria Co-authorship Network

Top 10 Brokers

MASSOUGBODJI ACHILLE

HAY SIMON I

KAREMA CORINE

SANNI AMBALIOU

KENGNE ANDRE PASCAL

AKOGBETO MARTIN

NDAM NICAISE TUIKUE

MALIK ELFATIH M

DABIRE K ROCH

DELORON PHILIPPE

Top 10 most connected authors (Top 10 network hubs)

MASSOUGBODJI ACHILLE

KAREMA CORINE

GONZALEZ RAQUEL

MENENDEZ CLARA

DALESSANDRO UMBERTO

OGUTU BERNHARDS R

FAUCHER JEANFRANCOIS

BASSAT QUIQUE

MARTENSSON ANDREAS

HAY SIMON I

Top 10 most important edges for information flow

DABIRE K ROCH _ KENGNE ANDRE PASCAL

BALDET THIERRY _ KENGNE ANDRE PASCAL

AKOGBETO MARTIN _ MALIK ELFATIH M

AVLESSI FELICIEN _ MOUDACHIROU MANSOUROU

AKOGBETO MARTIN _ AVLESSI FELICIEN

MASSOUGBODJI ACHILLE _ RAHIMY MOHAMED CHERIF

DIABATE ABDOULAYE _ KENGNE ANDRE PASCAL

GARCIA ANDRE _ SANNI AMBALIOU

KAREMA CORINE _ MALIK ELFATIH M

HAY SIMON I _ MALIK ELFATIH M

Weak articulation points

NOEL VALERIE

DJOGBENOU LUC

ZOHOUN I

SANNI AMBALIOU

EDORH ALEODJRODO PATRICK

ALLABI AUREL

HOUNKONNOU MAHOUTON NORBERT

FAYOMI BENJAMIN

KINDEGAZARD DOROTHEE A

DJOUAKA ROUSSEAU

Table 1 List of the most important authors and collaborations
in the Malaria Co-authorship Network (Continued)

RAHIMY MOHAMED CHERIF

BALDET THIERRY

DOSSOUGBETE L

GARCIA ANDRE

MASSOUGBODJI ACHILLE

AKOGBETO MARTIN
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Fig. 3 Malaria Co-authorship network – Main component. Authors (vertices) of the same color belong to the same research community or cluster

Fig. 4 Monte-Carlo simulations: Number of detected communities by the random graph models
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in our network [34]. The flow of information in the mal-
aria co-authorship in Benin is slow as it only relies on 16
authors representing less than 1% of all the authors in
the network. Such a low information flow was also re-
ported by Salamatia and Soheili [35] in a 2016 study on
a co-authorship analysis of Iranian researchers in the
field of violence. Generally, the most important authors

in a co-authorship network are the ones with the highest
degree of collaborations [36, 37]. However, to the long-
term substainability of the malaria research network in
Benin, The 16 authors identified as cut vertices are the
most important authors. In other words, the removal of
less than 1% of the authors from the network would lead
to its collapse. Such a collapse would undoubtedly be
detrimental to the future of malaria research in Benin.
This finding clearly confirms the conclusion of Toivanen
and Ponomariov [38] that the African research collabor-
ation network is vulnerable to structural weaknesses and
uneven integration.
Small-world networks are known to have small short-

est path distance and a high clustering coefficient. Al-
though our network seems to display such properties,
the Monte-Carlo simulations revealed that the observed
network has unexpected properties compared to classic
small-world networks. A study of co-authorship network
conducted on Chagas disease has found similar findings
[13]. Unlike our study, the authors of this study did not
deepen their analysis to confirm the small-world nature
of their observed network. Other mechanisms such as
preferential attachement have been found to explain the
structure of international scientific collaboration net-
work [39]. Unlike those studies, our network displayed
unexpected properties that are more extreme that the 4
mathematical models we simulated. Our network has
significantly larger shortest path distance and signifi-
cantly higher clustering than expected from the 4 math-
ematical models presented here. One observation we are
sure of is that none of the random graph models used
here tend to explain the growth and the structure of the
malaria co-authorship network in Benin. We therefore
claim without any doubt that the structure and growth
of our network is not random confirming the presence
of hidden factors explaining the current structure of the

Table 2 Distribution of published documents, authors and
collaborations from January 1996 to December 2016

Year Publications Vertices (Authors) Edges (Collaborations)

1996 3 16 68

1997 2 14 46

1998 1 2 1

1999 4 14 33

2000 1 9 36

2002 2 11 25

2003 2 9 16

2004 10 44 159

2005 16 62 285

2006 3 11 21

2007 22 112 809

2008 19 103 668

2009 27 136 704

2010 49 223 1853

2011 45 236 2100

2012 44 249 1759

2013 49 249 1917

2014 57 731 69,634

2015 41 453 25,302

2016 27 328 10,952

Aggregate 424 1792 116,388

Fig. 5 Monte-Carlo simulations: Number of detected communities by the Watts-Strogatz and the Barabási-Albert models
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network. Assessing such factors and the extent to which
they influence scientific collaborations is important for
the future of malaria research and its long-term sustain-
ability. Unfortunately, none of the proposed models
seem to accurately describe the observed structure of
the network. This is why we believe that Advanced ana-
lyses involving statistical modeling are needed to better
explain the structure of this network. In addition, unlike
mathematical modeling, statistical modeling allow model
fitting to the observed network [21, 40].
Our research has strengths. Unlike most studies on

co-authorship analysis, it applies not only descriptive
methods but also robust network analysis methods such
as inferential methods like Monte-Carlo simulations. We
test significance of the properties of our network to ac-
curately understand its structure. Our data mining strat-
egy involved a robust machine learning algorithm that
helped address the crucial issue of the disambiguation of
authors names and assign a unique identification to each
of them. This technique maintained a good quality of
the data collected throughout the pre-processing and
analysis steps. To the best of our knowledge, our study
is the first to describe the malaria research collabora-
tions network via co-authorship network analysis in
Benin.
The fact that our study collected data only from the

Web Of Science can be considered as an important limi-
tation of this study. However, according to Falagas and
colleagues [41], who compared PubMed, Scopus, Web
Of Science and Google Scholar in their paper, the Web
Of Science appears as a reasonable scientific database
source for our analysis. In addition, it proved to cover a
wide range of both old and recently published papers.
Falagas and colleagues [41] found PubMed to be the op-
timal choice in terms of scientific database. For that rea-
son, we did run the same bibliographic search in
PubMed. Unfortunately, the Web Of Science returns
more relevant data than PubMed. Another limitation
worth noting is that this study only looks at a snapshot
of the malaria research network on a static fashion.
There is also a need to apply dynamic statistical models
such as Temporal Exponential Random Graph [42] and
Dynamic Stochastic Block [43] modeling to better
understand the temporal dynamic of collaboration for-
mation in this network. Yet another limitation is inher-
ent to the nature of all co-authorship studies.
Collaborators, in a co-authorship network, do not often
come from the same scientific discipline, or do not play
the same roles on a particular research project. The data
we collected did not allow us to accurately assess or
even infer the disciplines each author came from or their
specific contribution in the published document.
As malaria continues to be highly prevalent in Benin,

it is essential to consolidate the knowledge generated

from the numerous studies on the disease and reinforce
the different communities involved in the research effort.
Our results suggest that there is an urgent need to foster
the malaria research network in Benin by continuously
supporting, stabilizing the identified key brokers and
most productive authors, and promoting the junior sci-
entists in the field. Taking such measures will ultimately
insure the long-term sustainability of the malaria co-
authorship and collaboration network in Benin.
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