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Abstract

Background: Many studies have modeled and predicted the spread of COVID-19 (coronavirus disease 2019) in the
U.S. using data that begins with the first reported cases. However, the shortage of testing services to detect
infected persons makes this approach subject to error due to its underdetection of early cases in the U.S. Our new
approach overcomes this limitation and provides data supporting the public policy decisions intended to combat
the spread of COVID-19 epidemic.

Methods: We used Centers for Disease Control and Prevention data documenting the daily new and cumulative
cases of confirmed COVID-19 in the U.S. from January 22 to April 6, 2020, and reconstructed the epidemic using a
5-parameter logistic growth model. We fitted our model to data from a 2-week window (i.e., from March 21 to April
4, approximately one incubation period) during which large-scale testing was being conducted. With parameters
obtained from this modeling, we reconstructed and predicted the growth of the epidemic and evaluated the
extent and potential effects of underdetection.

Results: The data fit the model satisfactorily. The estimated daily growth rate was 16.8% overall with 95% CI: [15.95,
17.76%], suggesting a doubling period of 4 days. Based on the modeling result, the tipping point at which new
cases will begin to decline will be on April 7th, 2020, with a peak of 32,860 new cases on that day. By the end of
the epidemic, at least 792,548 (95% CI: [789,162, 795,934]) will be infected in the U.S. Based on our model, a total of
12,029 cases were not detected between January 22 (when the first case was detected in the U.S.) and April 4.

Conclusions: Our findings demonstrate the utility of a 5-parameter logistic growth model with reliable data that
comes from a specified period during which governmental interventions were appropriately implemented. Beyond
informing public health decision-making, our model adds a tool for more faithfully capturing the spread of the
COVID-19 epidemic.
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Reconstruction, Under-detection, Tipping point, USA

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: dinchen@email.unc.edu
1School of Social Work, University of North Carolina, Tate-Turner Kuralt
Building 548-C, CB #3550, Chapel Hill, NC 27599, USA
2Department of Statistics, University of Pretoria, Pretoria, South Africa
Full list of author information is available at the end of the article

Global Health
Research and Policy

Chen et al. Global Health Research and Policy            (2020) 5:25 
https://doi.org/10.1186/s41256-020-00152-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s41256-020-00152-5&domain=pdf
http://orcid.org/0000-0002-3199-8665
http://creativecommons.org/licenses/by/4.0/
mailto:dinchen@email.unc.edu


Introduction
Coronavirus disease 2019 (COVID-19) is an infection
caused by a novel pathogen named SARS-Cov-2. Spread-
ing worldwide in less than five months, the COVID-19
pandemic is a typical example of a global health issue
[1]. In the months since the first COVID-19 case was re-
ported in the United States on January 22, 2020, many
studies have employed different models to reconstruct
the epidemic (i.e., the spread of COVID-19 within the
United States only) and forecast its future trends, from
simple growth models to classic susceptible-infected-
recovered models [2]. Yet due to the scarcity of available
information about the early period of the COVID-19
epidemic, researchers lack sufficient data to construct
complex and classic epidemiological models. In this con-
text, the population-based ecological growth model is
the preferable option for predicting the epidemic’s future
trajectory.
Researchers have developed various population-based

models for modeling population dynamics and disease
epidemics. One such model is the 1-parameter exponen-
tial growth model. In this model, population growth has
no upper limit and is determined by one parameter of
growth rate. To account for the upper limit of popula-
tion growth, the 2-parameter logistic growth model was
developed. In this model, the population growth rate is
exponential in the beginning, but this growth rate gets
smaller and smaller as population size approaches a
maximum carrying capacity as detailed described in
Richards [3], McIntosh [4], Renshaw [5], Kingsland [6],
and Vandermeer [7].
To account for additional key characteristics of popu-

lation growth, the 2-parameter logistic growth model
has since been extended to 3-parameter, 4-parameter,
and 5-parameter logistic growth models. These models
have been widely used in other fields of research, includ-
ing demography and analytical chemistry [8, 9]. Despite
the many analytical advantages of these models, to our
knowledge, no study has employed this 5-parameter
logistic growth model to examine the COVID-19 epi-
demic in the United States or in other countries. Thus,
one purpose of this study is to assess the utility of the 5-
parameter growth model in studying the dynamics of
the spread of COVID-19.
Unlike typical population growth models (in which the

initial population is a known quantity), only a small
number of COVID-19 cases were detected during the
early phase of the epidemic in the United States. In all
contexts, more extensive testing services detect more
cases; when the initial time of an epidemic’s outbreak is
known, extensive testing can yield data that more accur-
ately reflects the true growth of the epidemic. Data indi-
cate that the incubation period of COVID-19 is about 14
days [10], and COVID-19 testing services in the U.S.

became available in mid-March and were sustained
thereafter following CDC guidelines. Therefore, the 14-
day interval following the widespread implementation of
testing should demonstrate the highest level of detection
rates unaffected by the removal of infected individuals
from the growth curve, presenting ideal data for model
building. In principle, a model built with this data would
more accurately capture and predict the growth of
COVID-19 than models constructed from infection data
ranging from the first detected case to the present.

Methods
Data
Data for this study were the daily cumulative cases of
COVID-19 in the U.S. from January 22 to April 6, 2020.
This real-time data were compiled by the Centers for Dis-
ease Control and Prevention (CDC) and made available
on their website at the time we conducted our study [11].

Models
We modeled the data using the 5-parameter logistic
growth model as below:

C tð Þ ¼ Cmin þ Cmax−Cmin

1þ e−r t−tmidð Þ½ �α ð1Þ

where

1) C(t) is the number of cumulative cases of COVID-
19 over time, t (t = 1/22/2020, 1/23/2020, …, 4/6/
2020);

2) Cmin is the minimum number of cases at the
beginning of the epidemic on January 22, 2020,
when the first case was reported in the U.S.;

3) Cmax is the maximum number of people infected by
the time the epidemic ends (i.e. the model-
predicted total number of Americans who will be
infected with COVID-19);

4) r is the daily exponential growth rate;
5) tmid is the estimated tipping point when the

number of new daily cases begins to level off and
then to decrease; and

6) α is an asymmetric parameter quantifying the
skewness of the distribution of daily new cases. α =
1 indicates a symmetric distribution centered at
tmid; α > 1 indicates faster increases in new cases
before tmid and slower after tmid; and the reverse if
α < 1.

With Model 1 defined above, daily new cases D(t) can
be obtained by taking the first derivative of the model:
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D tð Þ ¼ C
0
tð Þ ¼ αr Cmax−Cminð Þ

1þ e−r t−tmidð Þ½ �αþ1 � e−r t−tmidð Þ

þ ∈ tð Þ; ð2Þ
where the error term ∈(t) is assumed to be normally dis-
tributed with mean 0 and standard deviation of σ.

Implementation of modeling analysis
We conducted our data analysis using the software R. A
5-parameter logistic growth model was fitted to the data
for new daily infections from March 21, 2020 to April 4,
2020, as shown in Model 2. Using the R function
“optim,” we implemented modeling analysis using a non-
linear optimization algorithm to minimize the sum of
squared errors between the observed and model-
estimated data. The optimization process yielded esti-
mates for the five parameters Cmin, Cmax, tmid, r, and α
with a significance level set at p < 0.05 (two-sided).
With these five estimated model parameters, we esti-

mated model-based cumulative cases (using Model 1)
and new cases (using Model 2) for each day from March
21 to April 4 and made predictions about cumulative
and new daily cases after April 4. We calculated the
underdetection of cases in this 2-week window by meas-
uring the differences between the reported number and
the model-predicted number of cases.

Results
Model 2 fitted the observed cumulative daily cases from
March 21 to April 4 satisfactorily and the model fit
converged nicely. Table 1 summarizes the estimated
parameters, their standard error (SE), and their 95% con-
fidence intervals (CI). Except for Cmin, all model parame-
ters were statistically significant at p < 0.001 level. The
lack of significance for Cmin appears to be reasonable
given the small scale of this number relative to the other
parameters and the practical difficulties of determining
the number of actual cases at the beginning of the epi-
demic when the first few COVID-19 cases were detected
and reported.
Based on our model estimates, at least 792,548 (95%

CI: [789,162, 795,934]) Americans will have been in-
fected with COVID-19 by the time the epidemic ends.

This number is slightly more than twice the number of in-
fections that had occurred in the U.S. by April 6. For rea-
sons we discuss later, this estimate may be conservative, as
the total number of reported cases exceeded 800,000 on
April 21, as we completed our revisions of this paper.
Our estimated tipping point for new daily cases was

on about April 7, 77 days (95% CI: [76, 78]) from the be-
ginning of the epidemic on January 22. In other words,
our model predicted that the epidemic curve in the U.S.
would begin to flatten around April 6–8, 2020. This esti-
mation corroborates recent reporting that new daily
cases in the U.S. have remained somewhat constant be-
ginning in early April [12]. This tipping point suggests
that it will take three to four more COVID-19 incuba-
tion periods (i.e., 6 to 8 weeks) for the U.S. to bring the
epidemic under control, given our documentation and
analysis of this process in China [10] (Chen X, Yu B,
Chen D: Three month of COVID-19 in China: surveil-
lance, evaluation, and forecast from outbreak to control
with a second derivation model, submitted).
The estimated exponential daily growth rate of COVID-

19 in the U.S. population is 16.9% (95% CI: [15.9, 17.8%]),
nearly the rate observed in China (17.12%) [10]. This U.S.
rate suggests that the number of total COVID-19 cases in
the U.S. will double every four days if no anti-epidemic ac-
tions are in place. The estimated asymmetric parameter α
was 0.954 (95% CI: [0.832, 1.075]), which is not statistically
different than α = 1.0. This result indicates that changes in
COVID-19 cases before and after the predicted tipping
point of April 7 will follow a similar pattern.
For further illustration, Table 2 summarizes three sets of

information ordered by days from the beginning of the epi-
demic: the data used for the model fitting section, a smaller
reconstruction section, and a prediction section. Our fitted
model detected substantial underdetected COVID-19 cases.
By April 7, when this study was completed, the CDC re-
ported a total of 395,011 detected cases; with our model,
we predicted that CDC data for reported cases in fact
underreported about 19,291 cases up to April 9.
Using a 2-week interval (i.e., March 21 to April 4) of

data, our model’s prediction of the number of new daily
cases from April 5 to April 11 matched quite well with
the observed data. For example, the model-predicted
number on April 9 was 31,705, very close to the ob-
served number of 31,582.
These results should be interpreted with caution. The

estimated sum square of error σ̂ = 2638.434 is quite
large, meaning that although our model fitted the 2-
week interval of data very well, a large amount of vari-
ation in the data is not explained by this model.
Below we provide two figures comparing the observed

and model-predicted dynamics of new daily cases (Fig. 1)
and of cumulative cases (Fig. 2). Overall, the model we
constructed from only two weeks of data very closely

Table 1 Summary of parameter estimation

Parameter Estimate SE p-value Lower 95% CI Upper 95% CI

Cmin 29.999 2059.86 0.988 − 4007.33 4067.32

Cmax 792,548 1727.56 < 0.0001 789,162 795,934

tmid 76.9 0.456 < 0.0001 75.952 77.739

r 0.16854 0.00463 < 0.0001 0.15947 0.17761

α 0.95364 0.06194 < 0.0001 0.83224 1.07504

Note: Parameters were estimated based on daily cases of COVID-19 in the U.S.
between March 21, 2020 and April 4, 2020
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predicted the reported numbers of both new and cumu-
lative cases. Correspondingly, our model predicts that
the cumulative cases will continue to increase rapidly
after the tipping point until early May, as illustrated in
Fig. 2.

Discussion
This study details our efforts to model, reconstruct, and
forecast the COVID-19 epidemic using a 5-parameter
logistic growth model – a method widely used in dem-
ography, biology, and other hard sciences. To our know-
ledge, we are the first to use this model to analyze the
COVID-19 epidemic in the U.S. We also developed and
used our model through an innovative approach.
Namely, to fit the model we intentionally used data from
a 2-week period when new cases could be more com-
pletely detected, and we then used this fitted model to
reconstruct the growth of cases before and after the 2-

week period as well as to forecast the future develop-
ment of the epidemic beyond the study period.
Based on findings from our modeling analysis, there is

not a high likelihood that the number of daily new cases
will increase continuously after the tipping point (i.e.,
April 7, 2020). However, our model’s estimation that at
least 800,000 Americans will be infected over the course
of the epidemic may be conservative, given that the total
number of reported cases exceeded 800,000 on April 21,
as we completed our revisions of this paper, while the
new cases fluctuated between 26,000 and 35,000 per day
due to the increased appearance of cases in other cities
and states outside of New York.
This conservative estimation is potentially attributable

to three factors. First, the exponential growth of our lo-
gistic model is very sensitive to differences in growth
rate, and a small difference in the number of early cases
can lead to a sizeable difference in predictions of

Table 2 Illustration of data usage with reported, predicted, and underreported counts

Data Usage Days Date Reported Cases Predicted Under-
reportedTotal Daily Daily Total

Reconstruction 54 3/15/2020 3487 1253 3108 19,781 16,294

55 3/16/2020 4226 739 3623 23,141 18,915

56 3/17/2020 7038 2812 4218 27,054 20,016

57 3/18/2020 10,442 3404 4902 31,606 21,164

58 3/19/2020 15,219 4777 5687 36,892 21,673

59 3/20/2020 18,747 3528 6584 43,019 24,272

Fitting 60 3/21/2020 24,583 5836 7603 50,102 25,519

61 3/22/2020 33,404 8821 8755 58,269 24,865

62 3/23/2020 44,183 10,779 10,047 67,658 23,475

63 3/24/2020 54,453 10,270 11,485 78,411 23,958

64 3/25/2020 68,440 13,987 13,070 90,676 22,236

65 3/26/2020 85,356 16,916 14,797 104,598 19,242

66 3/27/2020 103,321 17,965 16,656 120,315 16,994

67 3/28/2020 122,653 19,332 18,624 137,947 15,294

68 3/29/2020 140,904 18,251 20,670 157,589 16,685

69 3/30/2020 163,539 22,635 22,750 179,298 15,759

70 3/31/2020 186,101 22,562 24,810 203,082 16,981

71 4/1/2020 213,144 27,043 26,784 228,889 15,745

72 4/2/2020 239,279 26,135 28,600 256,597 17,318

73 4/3/2020 277,205 37,926 30,180 286,010 8805

74 4/4/2020 304,826 27,621 31,453 316,855 12,029

Forecast 75 4/5/2020 330,891 26,065 32,352 348,791 17,900

76 4/6/2020 374,329 43,438 32,830 381,419 7090

77 4/7/2020 395,011 20,682 32,860 414,302 19,291

78 4/8/2020 427,460 32,449 32,436 446,987 19,527

79 4/9/2020 459,165 31,705 31,582 479,030 19,865

80 4/10/2020 492,416 33,251 30,340 510,021 17,605
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subsequent cases. Second, although we strategically se-
lected a 2-week interval of data that we believed would
yield the best model for predicting the epidemic’s
growth, this data likely still underreported the actual
number of COVID-19 infections, making our estimated
growth rate smaller than the true growth rate. For ex-
ample, the estimated exponential growth rate of COVID-
19 is 17.12% for China [10], higher than 16.85%, the rate
we estimated for the U.S. A small difference in the expo-
nential growth rate can result in substantial differences in
the maximum number of infections. And third, the data
used for this analysis is from March 21 to April 4, 2020,
where most of the reported cases are from the states of
New York and New Jersey. The reported cases from these
two states are flattened from reported CDC. Still, more
cases are reported from other states, especially from the
states of Michigan, Florida, Louisiana, which would add to
the cases from New York and New Jersey to exceed the
800,000 predicted.
The accuracy of our model is also contingent on the

federal- and state-level policy decisions that emerge in
coming months. Although many states have implemented
strict shelter-in-place policies to slow down the epidemic’s
spread, several states still have no such policies in place.
In the absence of further policy action, we expect that

more cases will be reported which may greatly surpass the
estimated 800,000, and that the actual infection tipping
point may occur later in April. Indeed, significant varia-
tions still persist in the estimated total infections in the
U.S. even in light of available data: Ferguson et al. [13]
predicted 2.2 million cases whereas the CDC’s worst-case
scenario model predicted a shocking 214 million cases
[14]. At this moment, it remains unclear which estimates
are more reliable. The accuracy of our estimation will be
tested in light of emerging data on the progression of the
epidemic in the United States.
The daily exponential growth rate of COVID-19 is

16.85% for the U.S. population, nearly the rate observed in
China (17.12%) [10]. Daily exponential growth rates can
be obtained with limited data in the early period of an
epidemic, and they provide a dynamic measure of instant-
aneous change, making doubling times calculated based
on growth rate highly useful for directing and evaluating
anti-epidemic measures. The U.S.’s daily exponential
growth rate suggests that the number of COVID-19 in-
fections will double every four days. For example, if the
total cases are 500,000 today, there will be 1,000,000 in
four days (with 40,000 anticipated deaths) if no timely
anti-epidemic measures are implemented. No one – in-
cluding policymakers, medical and health professionals,

Fig. 1 Observed vs. model-estimated and forecasted daily new COVID-19 cases, January 22–May 30, U.S.A
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and the general public – should ignore this evidence of
the pressing need to control the pandemic.

Conclusion
Understanding and curbing the COVID-19 epidemic in
the U.S. is an essential part of fighting the pandemic glo-
bally [1]. This study provides data important for inform-
ing public health decision-making designed to end the
epidemic in the U.S. Our study also demonstrates the
utility and efficiency of the 5-parameter logistic growth
model for examining the dynamics of an epidemic in its
early period when little data is available. Additionally,
our selection of the 5-parameter logistic exponential
growth model was based on intensive testing of other
models, including 2-parameter, 3-parameter, and 4-
parameter models. Of all models tested, the 5-parameter
produced the most accurate results and generated key
information, including the exponential growth rate, the
doubling time for the epidemic, and the tipping point
when daily new cases will level off.

Our study’s findings should be considered in light of
their limitations. First, our strategic selection of data from
a specific timeframe is more subjective than objective, and
not applicable in all contexts. Researchers applying this
method in different countries/regions with different anti-
epidemic strategies implemented in different ways should
make their own determinations regarding the optimal
timeframe to select for their modeling. We selected the 2-
week interval from March 21 to April 4 because this inter-
val spans approximately one COVID-19 incubation period
and because the U.S. government began implementing
widespread testing services by the beginning of this
period, meaning that data from this interval potentially
captured a more representative set of new cases. Inter-
ested readers can conduct their own analyses using this
model while expanding on this time window to further as-
sess the utility of this method. So far, the model’s short-
term predicted daily cases are quite close to the observed
daily cases, as shown by Table 2. However, our model’s
long-term predictions of future new daily cases may not
be accurate (which is true of any model-based long-term

Fig. 2 Observed vs. model-estimated and forecasted daily cumulative COVID-19 cases, January 22–May 30, U.S.A
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prediction), so these long-term predictions should be con-
sidered with caution.
Second, additional work is needed to improve confi-

dence in the accuracy Cmin, the minimum number of
cases at the beginning of an epidemic. It is challenging
to improve this estimation given the large range of dif-
ferent measures in the model. For example, the range
between Cmin and Cmax in our analysis is from about 30
to about 800,000. Furthermore, the number of reported
cases at the beginning of the epidemic is highly unreli-
able due to a lack of testing protocols and perhaps a lack
of awareness of the incipient epidemic itself, which will
lead in turn to an unreliable estimation of Cmin.
Despite the limitations, findings from this study pro-

vide timely data that can inform public health decision-
making and policies designed to end the epidemic. We
will continue to update our model as more data become
available and the COVID-19 epidemic in the United
States continues to evolve.

Abbreviations
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COVID-19: Coronavirus disease 2019; SE: Standard error

Acknowledgments
We appreciate Dr. Jordan Wingate for his professional editing for this
manuscript, which substantially improves the quality of this manuscript. We
also appreciate the two anonymous reviewers for their comments and
suggestions to make this manuscript publishable.

Authors’ contributions
All three authors participated in data validation, data analysis, and
manuscript preparation. The author(s) read and approved the final
manuscript.

Authors’ information
Dr. Ding-Geng Chen is the Wallace H. Kuralt distinguished professor in the
School of Social Work, University of North Carolina at Chapel Hill. Dr.
Xinguang Chen is a professor in the Department of Epidemiology, University
of Florida. Ms. Jenny K. Chen is a undergraduate student in the Department
of Statistics and Data Science at Cornell University.

Funding
Not applicable.

Availability of data and materials
The dataset supporting the conclusions of this article is available from the
Centers for Disease Control website, https://www.cdc.gov/coronavirus/2019-
ncov/cases-updates/cases-in-us.html.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests associated with this study.

Author details
1School of Social Work, University of North Carolina, Tate-Turner Kuralt
Building 548-C, CB #3550, Chapel Hill, NC 27599, USA. 2Department of
Statistics, University of Pretoria, Pretoria, South Africa. 3Department of
Epidemiology, University of Florida, Gainesville, USA. 4Department of
Statistics and Data Science, Cornell University, Ithaca, USA.

Received: 13 April 2020 Accepted: 3 May 2020

References
1. Chen X, Li H, Lucero-Prisno D, Abdullah A, Huang J, Laurence C, et al. What

is global health? Key concepts and clarification of misperceptions: report of
the 2019 GHRP editorial meeting. Glob Health Res Policy. 2020;5(14). https://
doi.org/10.1186/s41256-020-00142-7.

2. Huang Y, Yang L, Dai H, Tian F, Chen K. Epidemic situation and forecasting
of COVID-19 in and outside China. Bull World Health Organ. 2020. https://
doi.org/10.2471/BLT.20.255158 [Epub ahead of print].

3. Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;
10(2):290–301. https://doi.org/10.1093/jxb/10.2.290.

4. McIntosh RP. The background of ecology. New York: Cambridge University
Press; 1985.

5. Renshaw E. Modeling biological populations in space and time. New York:
Cambridge University Press; 1991.

6. Kingsland SE. Modeling nature: episodes in the history of population
ecology. Chicago: University of Chicago Press; 1995.

7. Vandermeer J. How populations grow: the exponential and logistic
equations. Nature Education Knowledge. 2010;3(10):15 [cited 2020 Apr 23].
Available from: https://www.nature.com/scitable/knowledge/library/how-
populations-grow-the-exponential-and-logistic-13240157/.

8. Gottschalk PG, Dunn JR. The five-parameter logistic: a characterization and
comparison with the four-parameter logistic. Anal Biochem. 2005;343(1):54–
65. https://doi.org/10.1016/j.ab.2005.04.035.

9. Motulsky HJ, Brown RE. Assessing the (a) symmetry of concentration-
effect curves: empirical versus mechanistic models. BMC Bioinformatics.
2006;7:123.

10. Chen X, Yu B. First two months of the 2019 coronavirus disease (COVID-19)
epidemic in China: real-time surveillance and evaluation with a second
derivative model. Glob Health Res Policy. 2020;5(7). https://doi.org/10.1186/
s41256-020-00137-4.

11. Centers for Disease Control and Prevention. Cases of coronavirus disease
(COVID-19) in the U.S; 2020. [cited 2020, Apr 7]. Available from: https://www.
cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html.

12. Johns Hopkins University and Medicine. New cases of COVID-19 in world
countries; 2020. [cited 2020, Apr 22]. Available from: https://coronavirus.jhu.
edu/data/new-cases.

13. Ferguson NL, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al.
Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19
mortality and healthcare demand: WHO Collaborating Centre for Infectious
Disease Modelling, MRC Centre for Global Infectious Disease Analysis, Abdul
Latif Jameel Institute for Disease and Emergency Analytics, Imperial College
London; 2020. https://www.imperial.ac.uk/media/imperial-college/medicine/
sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-202
0.pdf. Accessed 12 Apr 2020.

14. Danner C. CDC’s worst-case coronavirus model: 214 million infected, 1.7
million dead. New York Intelligencer. 2020; [cited 2020, Apr 12]; Available
from: https://nymag.com/intelligencer/2020/03/cdcs-worst-case-coronavirus-
model-210m-infected-1-7m-dead.html.

Chen et al. Global Health Research and Policy            (2020) 5:25 Page 7 of 7

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://doi.org/10.1186/s41256-020-00142-7
https://doi.org/10.1186/s41256-020-00142-7
https://doi.org/10.2471/BLT.20.255158
https://doi.org/10.2471/BLT.20.255158
https://doi.org/10.1093/jxb/10.2.290
https://www.nature.com/scitable/knowledge/library/how-populations-grow-the-exponential-and-logistic-13240157/
https://www.nature.com/scitable/knowledge/library/how-populations-grow-the-exponential-and-logistic-13240157/
https://doi.org/10.1016/j.ab.2005.04.035
https://doi.org/10.1186/s41256-020-00137-4
https://doi.org/10.1186/s41256-020-00137-4
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://coronavirus.jhu.edu/data/new-cases
https://coronavirus.jhu.edu/data/new-cases
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf
https://nymag.com/intelligencer/2020/03/cdcs-worst-case-coronavirus-model-210m-infected-1-7m-dead.html
https://nymag.com/intelligencer/2020/03/cdcs-worst-case-coronavirus-model-210m-infected-1-7m-dead.html

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Data
	Models
	Implementation of modeling analysis

	Results
	Discussion
	Conclusion
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References

