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Abstract

Background: At 10 a.m. on January 23, 2020 Wuhan, China imposed a 76-day travel lockdown on its 11 million
residents in order to stop the spread of COVID-19. This lockdown represented the largest quarantine in the history of
public health and provides us with an opportunity to critically examine the relationship between a city lockdown on
human mobility and controlling the spread of a viral epidemic, in this case COVID-19. This study aims to assess the
causal impact of the Wuhan lockdown on population movement and the increase of newly confirmed COVID-19 cases.

Methods: Based on the daily panel data from 279 Chinese cities, our research is the first to apply the synthetic control
approach to empirically analyze the causal relationship between the Wuhan lockdown of its population mobility and
the progression of newly confirmed COVID-19 cases. By using a weighted average of available control cities to
reproduce the counterfactual outcome trajectory that the treated city would have experienced in the absence of the
lockdown, the synthetic control approach overcomes the sample selection bias and policy endogeneity problems that
can arise from previous empirical methods in selecting control units.

Results: In our example, the lockdown of Wuhan reduced mobility inflow by approximately 60 % and outflow by
about 50 %. A significant reduction of new cases was observed within four days of the lockdown. The increase in new
cases declined by around 50% during this period. However, the suppression effect became less discernible after this
initial period of time. A 2.25-fold surge was found for the increase in new cases on the fifth day following the
lockdown, after which it died down rapidly.

Conclusions: Our study provided urgently needed and reliable causal evidence that city lockdown can be an effective
short-term tool in containing and delaying the spread of a viral epidemic. Further, the city lockdown strategy can buy
time during which countries can mobilize an effective response in order to better prepare. Therefore, in spite of initial
widespread skepticism, lockdowns are likely to be added to the response toolkit used for any future pandemic outbreak.
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Background
COVID-19 emerged in the city of Wuhan in the
Hubei Province of China in December of 2019 and
spread rapidly [1–3]. Because of the relatively mild
symptoms and the fact that it can spread before the
onset of symptoms [4], COVID-19 evolved into one
of the worst global pandemics. Novel COVID-19

vaccines made by Pfizer and Moderna have provided
promising efficacy, but it is still unclear how well they
will contain the spread of coronavirus. Further com-
plicating this problem is the fact that viruses con-
stantly mutate [5]. New variants are leading to
increased cases due to the mutations having an easier
and more rapid transmission [5, 6]. The emergence of
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a new variant of the virus in the UK in December
2020 caused a surge in new COVID-19 cases [6].
Additionally, a new variant first identified in India in
March 2021 contained a “double mutant” and
launched a deadly second wave of COVID-19 [7].
Currently, multiple dangerous variants of the COVID-
19 virus are circulating globally [5]. The lag in vac-
cine development and the unclear effectiveness of
existing vaccines against the new variants exacerbate
the uncertainty of the containment and control in the
coming months.
COVID-19 and many other virus infections are pri-

marily transmitted through person-to-person contact
[8]. In response to the threat of this pandemic, many
countries have considered and implemented mea-
sures to restrict the movement of people as part of
their response plan [9–12]. However, due to the
negative impact on freedom of movement, the econ-
omy, and society at large, coupled with the uncer-
tainty of its effectiveness in controlling the epidemic,
restrictions on human mobility are controversial.
Additionally, both granular disease occurrence data
and population mobility data are difficult to obtain
[11]. Further, in the case of epidemic transmission, it
is difficult to isolate the impact of human mobility
from other potential contributing factors [13, 14].
Together, it is also an empirical challenge to quan-
tify the impact of movement restrictions on the
spread of the epidemic.
Wuhan, China imposed a 76-day lockdown on its

11 million people from 10 a.m. on January 23, 2020,
to midnight on April 8, 2020. This lockdown repre-
sented the largest quarantine in the history of public
health and provides us with an opportunity to critic-
ally examine the effects of a city lockdown on resi-
dent mobility and the spread and containment of
COVID-19. Previous studies have contributed to the
understanding of the impact of various control mea-
sures related to human mobility and virus transmis-
sion. Fang et al. [12] quantify the causal impact of
the Wuhan lockdown on the containment and delay
of the COVID-19 by employing various difference-
in-differences (DID) estimation strategies. They find
that the Wuhan lockdown reduced inflow into Wu-
han by 76.64 % and outflow from Wuhan by 56.35 %
[12]. They also find that in the counterfactual world
of Wuhan, where there is no city lockdown, the
COVID-19 cases would increase by 64.81 % in the
347 Chinese cities outside Hubei province and
52.64 % in the 16 non-Wuhan cities inside Hubei
[12]. Applying machine learning methods and using
exogenous temperature, wind speed, and precipita-
tion readings in the preceding third and fourth
weeks as the instruments, Qiu et al. [15] show that

the large-scale lockdown and other control measures
significantly reduced the spread of the virus. Their
findings highlight that population outflows from the
outbreak source city pose higher risks to the destin-
ation cities than other social and economic factors
[15]. Using the global epidemic and mobility model,
Chinazzi et al. [16] find that the Wuhan lockdown
reduced the number of infections by 10 % in cities
outside Wuhan by January 31. Applying a networked
dynamic meta-population model and Bayesian infer-
ence, Li et al. [4] find that before the Wuhan lock-
down 86 % of all infections were undocumented and
that reported infections would have been reduced by
78.7 % if there were no transmission from undocu-
mented cases between January 10 and January 23. By
building an SEIR model, Lai et al. [17] find that the
non-pharmaceutical interventions (NPI) deployed in
China appear to be effective in controlling the
COVID-19 outbreak, with early case detection and
contact reduction being the most effective. Deploying
the NPIs early is also important to prevent further
spreading [17].
In this paper, we will examine two research ques-

tions. First, how does the Wuhan lockdown affect
population mobility during the COVID-19 outbreak?
Second, can the city lockdown effectively reduce the
spread of infection? To the best of our knowledge,
this paper is the first to apply the synthetic control
method to analyze a sample group of 279 Chinese
cities to quantify the causal impact of a city lock-
down on population mobility and the spread of
COVID-19.

Methods
Research design
In addition to randomized controlled trials (RCTs),
the DID technique and propensity score matching
(PSM) were usually used in the previous literature
for causal inference and policy evaluation. However,
the DID approach is subjective and arbitrary for the
selection of the reference group [2, 3]. Also, policy
endogeneity arises because systematic differences
between the treated city and the control city may be
responsible for the implementation of the policy in
the target city [2, 3]. Besides, the parallel trend hy-
pothesis may not be feasible because unobserved
confounders may have time-varying effects on the
results [2, 3]. The PSM method only controls the in-
fluence of observable variables. If the selection is
based on unobservable variables, hidden biases will
occur [2, 3]. Further, the PSM-DID design cannot
control for unobservable factors that change over
time [2, 3].
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In contrast, the synthetic control method (SCM) [18,
19] addresses those problems. Its advantages are also
reflected in: (1) The contribution of each control unit to
the entire synthetic unit is explicitly reflected so the
transparency of the counterfactual allows the weights to
be validated [20]. (2) No extrapolation is required, and
the synthetic weights are calculated and selected without
using the post-intervention data, ruling out the risk of
specification cherry-picking or p-hacking [21]. Athey
and Imbens [22] believe that the SCM method is “argu-
ably the most important innovation in the policy evalu-
ation literature in the last 15 years”.
Our interest is to test the causal impact of the Wuhan

lockdown on population mobility and the spread of
COVID-19. By employing a SCM technique we adopt a
data-driven procedure that uses a weighted average of a
set of control cities to construct a “synthetic” Wuhan.
The goal of the synthetic Wuhan is to reproduce the tra-
jectory of real Wuhan in terms of population movement
and epidemic spread before it was locked. Then, the dif-
ference in the trajectories between the synthetic and real
Wuhan after the lockdown can be summarized as the
causal effect of the lockdown.

Variables and model development
The outcome variables of interest in this study are popu-
lation inflow (IMI), population outflow (OMI), and the
increase of newly confirmed COVID-19 cases (New-
Growth). Following Abadie et al. [19] and Yang [2, 3],
suppose we observe the outcome of K þ 1 cities during
the period tð¼ 1;…;TÞ. Let YN

it be the outcome for city
ið¼ 1;…;K þ 1Þ at time t if no lockdown is imple-
mented. Let Y I

it be the outcome for city i at time t if city
i is locked in periods T 0 þ 1 to T , where T 0 is the start-
ing point of the lockdown. In the pre-lockdown period
(for t 2 1;…;T 0f g) we have Y I

it ¼ YN
it for all

i 2 1;…;K þ 1f g. Let αit¼ Y I
it � YN

it be the effect of the
lockdown for city i at time t. We can observe Y I

it of the
city that implemented the lockdown, but we cannot ob-
serve YN

it of this treated city. Therefore, to estimate YN
it

this study uses the following factor model proposed by
Abadie et al. [19]:

YN
it ¼ θtZi þ λtμi þ δt þ �it ; ð1Þ

where Zi is a vector of observed covariates for city i, θt
denotes a corresponding vector of unknown parameters,
μi is a vector of unobserved local fixed effects, λt repre-
sents a vector of unknown common factors, δt refers to
time fixed effects, and the error terms �it are unobserved
transitory shocks with zero mean at the city level.
Suppose that the first city (i ¼ 1) is locked, and the

remaining K cities (i ¼ 2;…;K þ 1) are not. Consider a

(K � 1) vector of weights W ¼ ðw2;…;wKþ1Þ‘ such that
wk � 0 for k ¼ 2;…;K þ 1 and w2;…;wKþ1 ¼ 1. Each
particular value of W represents a potential synthetic
control, which is a weighted average of all cities in the
control group. The outcome variable for each synthetic
control indexed by W is

X
Kþ1
k¼2 wkY kt ¼ δt þ θt

X
Kþ1
k¼2 wkZk þ λt

X
Kþ1
k¼2 wkμk þ

X
Kþ1
k¼2 wk�kt:

ð2Þ

Suppose that there are (w�
2;…;w�

Kþ1) such that

X
Kþ1
k¼2 w

�
kY k1 ¼ Y 11;

X
Kþ1
k¼2 w

�
kY k2 ¼ Y 12;

X
Kþ1
k¼2 w

�
kY kT0

¼ Y 1T0 ; and
X

Kþ1
k¼2 w

�
kZk ¼ Z1:

ð3Þ

If
PT0

t¼1 λ
‘
tλt is nonsingular, then,

YN
1t �

X
Kþ1
k¼2 w

�
kY kt ¼

X
Kþ1
k¼2 w

�
k

X
T0
s¼1λt

X
T0
n¼1λ

‘
nλn

� �‘
λ‘s �ks � �1sð Þ

�
X

Kþ1
k¼2 w

�
kð�kt � �1tÞ:

ð4Þ

Abadie et al. [19] have proved that the right-hand side
of Eq. (4) converges to zero under several parsimonious
requirements. Therefore, during the lockdown period

(t � T 0),
PKþ1

k¼2 w�
kY kt can be used as an unbiased esti-

mate of YN
1t to evaluate the effects of lockdown.

The weight vector W � ¼ ðw�
2;…;w�

Kþ1Þ‘ is chosen by

minimizing the distance function ‖X1 � X0W ‖V ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðX1 � X0W Þ‘VðX1 � X0WÞp
[19]. In this function, X

denotes the feature vector of cities, which corresponds
to the observable control variable Z and the outcome Y
before the lockdown. The importance of different feature
vector X in constructing weights depends on the selec-
tion of the symmetric and positive semidefinite matrix
V . We include in X the values of predictors of popula-
tion mobility and the increase of newly confirmed
COVID-19 cases for Wuhan and the 278 potential con-
trols. Our predictors of population mobility are gross re-
gional product per capita (GRPper), medical resources
(MedIndex), city population (Pop), city area (Area), and
daily growth rate of new diagnoses (NewGrowth). These
variables are averaged over the January 1–22 period and
augmented by adding population mobility levels (IMI
and OMI) in specific periods. Our predictors of COVID-
19 transmission are population mobility (IMI and OMI),
air quality Index (AQI), mortality rate (MortalRate), the
proportion of the population aged 65 and over (Age65+),
population density (Dens), gross regional product per
capita (GRPper), and medical resources (MedIndex).
These variables are averaged over the January 20–22
period and extended by adding the daily increase of new
diagnoses (NewGrowth) in specific periods.
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Data collection and processing
The data used in this study were collected from multiple
open-access databases. Inter-city population migration
data came from Baidu Migration, a travel map offered
by Baidu, the largest Chinese search engine. The Baidu
Migration data are based on real-time location records
of each smartphone using the company’s mapping app
and thus can accurately reflect the population move-
ments between cities. Specifically, we used two migra-
tion intensity indicators provided by Baidu Migration
data: the daily in-migration index (IMI) of a city and the
daily out-migration index (OMI) of a city to measure the
inflow and outflow levels of each city. These intensity in-
dicators, which covered 369 Chinese cities from January
1, 2020, to May 5, 2020, were consistent across cities
and over time. Data on COVID-19 daily confirmed cases
were obtained from the Johns Hopkins University’s Cen-
ter for Systems Science and Engineering (JHU CSSE),
which provides daily updates on COVID-19 confirmed,
death, and recovered cases in each Chinese city. More-
over, city-level air quality data were collected from the
China Air Quality Online Monitoring and Analysis plat-
form. Demographic and socio-economic development
data of each city came from the China City Statistical
Yearbook 2019 and the latest Sixth National Population
Census of China.

Data analysis
Our sample data, which covered 279 cities in China
between January and April 2020, were generated by
matching the above data sets based on city names
and dates and deleting cities with missing values. To
suppress the spread of COVID-19, the central govern-
ment of China imposed an unprecedented lockdown
in Wuhan from 10 a.m. on January 23, 2020, and in
other Hubei cities a few days later. Most of the other
cities in our sample also issued different levels of
lockdown policies starting on February 2 [12], making
them unable to remain as potential control units.
Therefore, in order not to attenuate the lockdown ef-
fect estimate that we obtained for Wuhan, we ex-
cluded cities in Hubei province other than Wuhan
and restricted our data period to February 1. This
means that our analysis was limited to ten days after
locking. We set the Wuhan lockdown date as January
23, 2020, to match the official government announce-
ment that Wuhan would be locked down at 10:00
a.m. on that day. However, Abadie [20] recommended
that if there is an anticipation effect, the researchers
should backdate the intervention date in order to
fully estimate the entire scope of the policy interven-
tion. Therefore, we tested different starting dates and
were sure that our results were not sensitive to the
choice of date.

Results
Daily trends in Wuhan and other cities in China
Figure 1 plots the trends in the daily in-migration
index, the daily out-migration index, and the growth
rate of newly confirmed COVID-19 cases in Wuhan
(red line) and other Chinese cities (gray dashed line).
As this figure suggests, the time series of Wuhan and
other cities in China differed notably before the lock-
down. Therefore, other cities in China may not pro-
vide a suitable comparison group for Wuhan to study
the effects of the lockdown on population inflow,
population outflow, and virus transmission. Figure 1
(top) shows that the level of population inflow in
Wuhan from January 1 to January 21 has been three
times that of other cities in China and dropped to
the same level as other cities on the day of the lock-
down. Following the lockdown, the inflows into Wu-
han continued to fall and remained below those of
other cities. Figure 1 (middle) reveals that the outflow
of Wuhan before the lockdown had been four times
that of other cities in China. Note that the population
outflow from Wuhan has increased significantly since
January 21, which peaked the day before the city was
closed. The outflow from Wuhan continued to de-
cline after the lockdown and started to be smaller
than that of other Chinese cities on January 25. Fig-
ure 1 (bottom) shows that the growth rate of new
diagnoses in Wuhan peaked on January 21 and
dropped to the same level as other cities on the day
of the lockdown. During the first four days of the
lockdown, the increase of new cases in Wuhan
remained about two times lower than that of other cities.
The increase of Wuhan suddenly jumped by 33 % on
January 27 and quickly dropped to a level similar to that
of other cities starting from January 28.

Daily trends in Wuhan and synthetic Wuhan
To assess the impact of the lockdown on population
inflows, population outflows, and the growth rate of
new cases in Wuhan, the central question is how
these trends would have evolved in Wuhan after
January 23 in the absence of the lockdown. As ex-
plained above, we constructed the synthetic Wuhan
as the convex combination of cities in the control
group, which most closely resembled Wuhan in terms
of the pre-lockdown value of each predictor. The re-
sults are shown in Table 1, which compared the pre-
lockdown characteristics of the actual Wuhan with
those of the synthetic Wuhan, as well as with the
population-weighted average of the 278 cities in the
control group.
We see that the average from cities that were not

locked down between January 23 and February 1 did not
provide a suitable control group for Wuhan. In
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Fig. 1 Trends in IMI, OMI, and NewGrowth: Wuhan vs. other cities in China. Note: Since COVID-19 data for most cities were not available until
January 20, our sampling period for the study of the growth rate of newly confirmed cases began on January 20
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particular, before the lockdown, population inflows,
population outflows, and the increase of newly con-
firmed COVID-19 cases were lower in the average of the
278 control cities than in Wuhan. Moreover, before the
implementation of the lockdown other predictors on
average in the 278 control cities were substantially dif-
ferent from those in Wuhan. In contrast, the synthetic
Wuhan accurately reproduced the values that population
inflows, population outflows, and the growth rate of new
cases and their predictor variables had in Wuhan prior
to the implementation of the lockdown.
Table 2 displays the weights of each control city in the

synthetic Wuhan. The weights reported by Panel A in

Table 2 indicate that the population inflow trend in
Wuhan before the lockdown was best captured by a
combination of Beijing, Xiamen, Guangzhou, Chengdu,
Jinan, and Ganzhou. Panel B shows that the population
outflow trend in Wuhan prior to the lockdownwas best
reproduced through a combination of Beijing,
Guangzhou, Chengdu, and Jinan. According to Panel C,
the pre-lockdown trend in the growth rate of new cases
in Wuhan was best imitated by a combination of Beijing,
Guangzhou, Chengdu, Shenzhen, Wenzhou, Zhanjiang,
Zhuhai, and Zhengzhou.
Figure 2 plots the daily trends in the in-migration index,

the out-migration index, and the growth rate of newly

Table 1 Predictor means for IMI, OMI, and NewGrowth

IMI OMI NewGrowth Average
of 278
control
cities

Variables Real
Wuhan

Synthetic Wuhan Real
Wuhan

Synthetic Wuhan Real
Wuhan

Synthetic Wuhan

GRPper (2019 CNY) 135,136.00 107,547.60 135,136.00 109,783.10 135,136.00 92,652.91 60,116.67

MedIndex 41,478.00 32,685.31 41,478.00 40,900.51 41,478.00 34,760.72 10,885.88

Pop (10, 000 persons) 884.00 774.95 884.00 908.26 443.05

Area (km2) 8,569.00 9,521.92 8,569.00 10,145.51 20,119.49

NewGrowth 0.13 0.02 0.13 0.02 0.00

NewGrowth (Jan 20) 0.30 0.30 0.03

NewGrowth (Jan 21) 0.41 0.42 0.01

NewGrowth (Jan 22) 0.16 0.17 0.02

IMI 3.77 3.72 1.85

OMI 10.29 10.11 1.89

AQI 116.00 77.92 94.11

MortalRate (% Pop.) 0.01 0.01 0.01

Age65+ (% Pop.) 0.08 0.08 0.09

Dens (people perkm2) 1,031.63 646.12 428.12

IMI (Jan 01–16) 4.26 4.29 4.26 4.93 1.32

IMI (Jan 17) 4.40 4.18 4.40 4.43 1.53

IMI (Jan 18) 4.23 4.24 4.23 4.37 1.69

IMI (Jan 19) 4.15 4.09 4.15 4.26 1.68

IMI (Jan 20) 4.18 3.95 4.18 4.21 1.72

IMI (Jan 21) 4.24 4.18 4.24 4.52 1.98

IMI (Jan 22) 2.90 3.58 2.90 3.86 1.85

OMI (Jan 01–16) 5.93 5.28 5.93 5.84 1.33

OMI (Jan 17) 6.44 6.45 6.44 6.55 1.55

OMI (Jan 18) 7.71 7.60 7.71 7.64 1.72

OMI (Jan 19) 7.41 7.55 7.41 7.57 1.71

OMI (Jan 20) 8.31 8.31 8.31 8.45 1.76

OMI (Jan 21) 10.74 10.51 10.74 10.77 2.02

OMI (Jan 22) 11.84 11.01 11.84 11.46 1.89

Notes: (1) IMI (Jan 01–16) means that the variable IMI was averaged from January 1 to January 16, IMI (Jan 17) means that the variable IMI took the value of
January 17, and the rest may be deduced by analogy. (2) MedIndex was measured by the average of the number of hospitals, beds, and licensed physicians at the
city level
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confirmed COVID-19 cases in Wuhan (red line) and syn-
thetic Wuhan (gray dashed line). Notice that, in contrast
to the trends in other cities in China (as shown in Fig. 1),
population inflows, population outflows, and the growth
rate of new cases in the synthetic Wuhan very closely
tracked the trajectory of these variables in Wuhan for the
entire pre-lockdown period. Combined with the high de-
gree of balance on all predictors (Table 1), this indicates
that the synthetic Wuhan provided a reasonable approxi-
mation of Wuhan between January 23 and February 1 in
terms of population inflows, population outflows, and the
growth rate of new cases in the absence of the lockdown.

Impact of city lockdown
Our estimate of the impact of the lockdown on popula-
tion mobility and virus transmission in Wuhan was the
difference between population inflows, population out-
flows, and the increase of newly confirmed COVID-19
cases in Wuhan and in their synthetic versions after the
lockdown. Figure 3 plots the daily estimates (blue line)
of the impact of the lockdown.
Figure 3 (top) shows that the lockdown had a great in-

hibitory effect on population inflows, and this effect
reached its maximum on the fifth day of the lockdown
(January 27). Our results suggest that population inflows
decreased by approximately 60 % on average during the
entire period from January 23 to February 1. Note that
there was a small increase in the level of inflow on Janu-
ary 25. Figure 3 (middle) displays that the lockdown had
a substantial negative impact on the outflow of the
population, and this effect reached its maximum on the
second day of the lockdown (January 24) and gradually
weakened over time. Our results show that the overall
outflow of the population decreased by around 50 %
from January 23 to February 1. Figure 3 (bottom) shows
that the spread of COVID-19 was significantly sup-
pressed during the 4 days after the lockdown. The
growth rate of new diagnoses dropped by approximately
50 % during this period. It is useful to note that the in-
crease of new cases suddenly increased by about 2.25
times on the fifth day following the lockdown (January

27), after which it quickly fell back to the average of
other cities.

Placebo tests
To evaluate the significance of our estimates, we need to
answer the question of whether our results are entirely
caused by chance. Following Abadie and Gardeazabal
[18], Bertrand et al. [23], and Abadie et al. [19], we used
placebo tests to verify the possibility that we would ob-
tain results of this magnitude if we had randomly se-
lected a city for the study instead of Wuhan. Specifically,
we iteratively applied the synthetic control method to es-
timate the effect of the lockdown in Wuhan to every
other city in the control group. In each iteration, we
reassigned the lockdown intervention to one of the 278
control cities in our data and shifted Wuhan to the con-
trol group. We then calculated the estimated effect asso-
ciated with each placebo run. This iterative process
provided us with a distribution of estimated gaps for the
cities that were not blocked. If the placebo tests gener-
ated gaps of magnitude similar to the one estimated for
Wuhan, then our analysis did not provide significant evi-
dence of the impact of the lockdown on population mo-
bility and the spread of COVID-19 in Wuhan. On the
other hand, if the placebo studies show that the gap esti-
mated for Wuhan was unusually large compared to the
gaps for the cities that were not locked, then our analysis
provided significant evidence of the impact of the lock-
down in Wuhan.
Figure 4 depicts the results of the placebo test for

population inflows. The gray dashed lines denote the dif-
ference in population inflows between each city in the
control group and its respective synthetic version. The
superimposed red line represents the gap estimated for
Wuhan. Figure 4 (left) shows that the estimated gap for
Wuhan from January 23 to February 1 is unusually large
relative to the distribution of the gaps for the cities in
the control group. As Fig. 4 (left) indicates, the synthetic
method provides an excellent fit for population inflows
in Wuhan before the lockdown. The pre-lockdown mean
squared prediction error (MSPE) in Wuhan (the average

Table 2 City weights in the synthetic Wuhan

City Weight City Weight City Weight City Weight

Panel A: population inflows

Beijing 0.022 Xiamen 0.320 Guangzhou 0.083 Chengdu 0.236

Jinan 0.277 Ganzhou 0.061

Panel B: population outflows

Beijing 0.109 Guangzhou 0.042 Chengdu 0.198 Jinan 0.651

Panel C: the growth rate of newly confirmed COVID-19 cases

Beijing 0.362 Guangzhou 0.003 Chengdu 0.003 Shenzhen 0.038

Wenzhou 0.003 Zhanjiang 0.031 Zhuhai 0.004 Zhengzhou 0.003

Note: The remaining cities not listed in Panel A or Panel B were assigned 0 weights, while the cities not listed in Panel C were assigned 0.002 weights
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Fig. 2 Trends in IMI, OMI, and NewGrowth: Wuhan vs. synthetic Wuhan
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Fig. 3 Gap between Wuhan and Synthetic Wuhan in IMI, OMI, and NewGrowth
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of the squared differences between population inflows in
Wuhan and in its synthetic counterpart between January
1 and January 22) is about 0.043. The average MSPE of
the other 278 cities before the lockdown is about 0.033,
which is also quite small, suggesting that the synthetic
control method can provide a good fit for the pre-
lockdown inflows. However, Fig. 4 (left) also indicates
that the convex combination of population inflows in
other cities between January 1 and January 22 does not
reproduce well for some cities.
If the synthetic Wuhan had failed to fit population in-

flows for the real Wuhan before the lockdown, we would
have argued that much of the post-lockdown gap be-
tween the real and the synthetic Wuhan was also artifi-
cially created by lack of matching, rather than by the
effect of the lockdown. Thus, in Fig. 4 (right) we focused
only on those cities that could have fit almost as well as
Wuhan during the pre-lockdown period, that is, those
cities that had a pre-lockdown MSPE of less than twice
the MSPE of Wuhan. To achieve this, we excluded 11
cities (including Dongguan, Beijing, Guangzhou, Lang-
fang, Chengdu, Shenzhen, Suzhou, Maoming, Ganzhou,
Zhengzhou, and Chongqing). The synthetic approach
was clearly ill-advised for these cities. Figure 4 (right)
shows that almost all lines are tightly intertwined with
the zero-gap line before the lockdown. The negative ef-
fect in Wuhan after the lockdown was by far the lowest
of all. Based on the 268 control cities included in the fig-
ure, we can further estimate the probability of obtaining
a gap of the magnitude of the gap for Wuhan under a
random permutation of the intervention as the empirical
p-value. The first column of Table 3 shows that the

lockdown has always had a significant inhibitory effect
on population inflows into Wuhan during the lockdown
period.
Figure 5 depicts the results of the placebo test for

population outflow. As shown in Fig. 5 (left), the syn-
thetic control method provides a good fit for population
outflows in Wuhan before the lockdown. The pre-
lockdown MSPE in Wuhan was about 0.218. The aver-
age MSPE of the other 278 cities before the lockdown
was around 0.066, which indicated that the synthetic
control method can well adapt to the outflow of the
population before the lockdown. However, Fig. 5 (left)
also shows that there were still several lines that deviated
substantially from the zero-gap line during the pre-
lockdown period. Therefore, Fig. 5 (right) excluded five
cities (including Dongguan, Beijing, Guangzhou,

Fig. 4 IMI gaps in Wuhan and placebo gaps in 278 control cities

Table 3 Empirical p-values for IMI, OMI, and NewGrowth

(1) (2) (3)

Day IMI OMI NewGrowth

23Jan2020 0.000 0.004 0.004

24Jan2020 0.000 0.000 0.000

25Jan2020 0.000 0.000 0.723

26Jan2020 0.000 0.000 0.000

27Jan2020 0.000 0.000 0.069

28Jan2020 0.000 0.000 0.635

29Jan2020 0.000 0.000 0.558

30Jan2020 0.000 0.000 0.562

31Jan2020 0.000 0.000 0.223

01Feb2020 0.000 0.000 0.142
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Chengdu, and Shenzhen) with pre-lockdown MSPE
higher than twice the MSPE of Wuhan. In this figure,
the negative effect of the Wuhan lockdown was by far
the lowest of all cities. The second column of Table 3
further confirms that the lockdown has always had a sig-
nificant negative impact on population outflows in
Wuhan.
Figure 6 plots the results of the placebo check for the

growth rate of new COVID-19 cases. Figure 6 (left)
shows the excellent fit of the synthetic control method

to the pre-lockdown COVID-19 transmission in Wuhan.
The pre-lockdown MSPE in Wuhan was approximately
zero. The average MSPE of the other 278 cities before
the lockdown was about 0.072, indicating that the syn-
thetic control method was well adapted to the spread of
COVID-19 before the lockdown. The figure however
also suggests that the epidemic spread before the lock-
down cannot be well reproduced for some cities. Figure 6
(right) therefore discarded cities (including Beijing,
Chengdu, Shenzhen, Zhanjiang, and Zhengzhou) that

Fig. 5 OMI gaps in Wuhan and placebo gaps in 278 control cities

Fig. 6 NewGrowth gaps in Wuhan and placebo gaps in 278 control cities
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had a pre-lockdown MSPE of more than 1016 times the
MSPE of Wuhan. This was not a very lenient cutoff con-
sidering that the pre-lockdown MSPE of Wuhan was
quite small. Figure 6 (right) shows that the negative ef-
fect in Wuhan during the four days after the lockdown
was almost the lowest among all cities, while on the fifth
day, the positive effect in Wuhan was the highest among
all cities. After that, the effect in Wuhan was not dis-
cernible. The third column in Table 3 validates the dis-
play of Fig. 6. Specifically, the spread of COVID-19 was
significantly suppressed during the four days after the
lockdown. There was a significant increase in newly con-
firmed cases on the fifth day, after which the Wuhan
lockdown did not significantly inhibit the spread of the
epidemic.

Discussion
In response to the threat of the unprecedented COVID-
19 pandemic, governments around the world adopted
similar strict lockdown measures. However, due to the
extremely negative impact on freedom of movement, na-
tional economies, and even society at large, it is crucial
to clarify the positive effect of the city lockdown in con-
trolling the spread of an epidemic. Based on daily panel
data of 279 Chinese cities, our study is the first to
provide a causal interpretation of the impact of a city
lockdown on population mobility and the spread of
COVID-19 by using the synthetic control method. The
results showed that a city lockdown could effectively re-
duce human movement and play a crucial role in halting
the spread of COVID-19 but only for a short period of
time. Specifically, the lockdown reduced the population
flowing into Wuhan by around 60 % and the population
flowing out of Wuhan by approximately 50 %. There was
a slight increase in the level of population inflow on
January 25. A plausible explanation is that January 25 in
2020 is the Spring Festival of the Chinese Lunar New
Year when people used to return to their hometowns to
celebrate the New Year and reunite with their fam-
ilies. During the 4 days after the lockdown, the increase
in new cases dropped by about 50%. However, we ob-
served a 2.25-fold surge for the increase in new cases on
the fifth day, although it subsided rapidly afterward. Since
there was no significant change in the inflow and out-
flow levels in Wuhan during the same period, we specu-
late that this spike may come from two reasons. First, as
the epicenter of COVID-19, the medical systems in Wu-
han and other cities in Hubei were overwhelmed by a
large number of patients requiring laboratory testing, es-
pecially in the early stages of the virus out-
break [12]. Therefore, the overstretched health care
system in Wuhan and other cities in Hubei may lead to
delayed detection of patients infected with COVID-19.

The outbreak suppressed by the lockdown has released
more medical resources, allowing more residents to be
tested for COVID-19. Second, we estimate that the aver-
age incubation period of COVID-19 is 5 days, which is
consistent with previous medical literature [24–27]. From
the sixth day after the lockdown (January 28), the lock-
down no longer has a significant inhibitory effect on the
spread of the epidemic. One possible explanation is that
the rise in the panic caused by the lockdown in Wuhan
may spread to other cities. The panic effect that con-
tinues to accumulate causes the human activity to auto-
matically decrease, which helps slow the spread of the
virus in unlocked cities and attenuates our estimates.
As a precedent for lockdowns in other Chinese cities,

the Wuhan lockdown went well beyond the World
Health Organization (WHO) guidelines [28]. Western
observers initially questioned the lockdown strategy [29].
However, as the global COVID-19 pandemic increased,
similar lockdowns gradually were recognized and
adopted around the world. When northern Italy became
a new outbreak center in late February 2020, the Italian
government imposed a so-called “Wuhan-style lock-
down” by quarantining 12 towns in the provinces of
Lombardy and Veneto [30]. When Iran became a
COVID-19 hotspot, security experts at the Institute for
the Analysis of Global Security, suggested that the best
way for Iran to combat COVID-19 was to do precisely
what China had done with its Wuhan lockdown [31].
Dr. Anthony Fauci, White House advisor and NIAID
(National Institute of Allergy and Infectious Diseases)
director, also recommended a temporary lockdown in
India to control its extreme COVID-19 infection and
death rate [32].
Our analysis is novel. First because this paper uses the

synthetic control method developed by Abadie and Gar-
deazabal [18] and Abadie et al. [19], which allows for a
more objective assessment of the effectiveness of the
lockdown policy. Second, although many Chinese cities
implemented a large number of intensive policies to halt
virus transmission after the outbreak, this study uniquely
disentangles and quantifies the causal effects of the Wu-
han lockdown on population movement and COVID-19
transmission by selecting an appropriate sample time
window. Finally, this paper enriches the economic and
epidemiological literature regarding the determinants
and prevention of COVID-19 transmission, contributes
to the evaluation of public health measures aimed at re-
ducing transmission and mortality and provides timely
policy guidance for other countries.
Even though previous studies have confirmed that the

official statistics on the number of confirmed cases were
mostly accurate [12, 26], the robustness of the lockdown
effect on the systematic misreporting with different pro-
portions remains a useful subject for future research. In
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addition, this study shows that in the early stages of the
COVID-19 outbreak, the city lockdown was effective in
controlling the spread of the epidemic. However, due to
the limited time window of the sample data, it is not
possible to definitively determine whether the lockdown
will continue to be effective once the outbreak is more
widespread. Furthermore, while the 278 cities in our
control group were not placed in lockdown during the
ten-day period of our analysis, we cannot rule out that
human activities in these cities were automatically re-
duced due to panic effects. If true, this indicates that our
estimates of the reduction in population movement and
the spread of COVID-19 are conservative. More research
is needed in the future to determine how to best balance
the expected positive impact on public health with the
adverse impact on freedom of movement, economy, and
society at large.

Conclusions
This study provided valuable causal evidence that in the
absence of effective vaccines, city lockdown can effect-
ively reduce population movement and significantly con-
tain and delay the spread of COVID-19 in the short
term. Although once widely criticized, the lockdown in
Wuhan, as the largest quarantine in history, bought
China and the world time to better prepare for COVID-
19 and provided invaluable lessons for other countries in
the fight against the pandemic.
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