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Abstract 

Background The interrupted time series (ITS) design is a widely used approach to examine the effects of interven-
tions. However, the classic segmented regression (CSR) method, the most popular statistical technique for analyzing 
ITS data, may not be adequate when there is a transitional period between the pre- and post-intervention phases.

Methods To address this issue and better capture the distribution patterns of intervention effects during the tran-
sition period, we propose using different cumulative distribution functions in the CSR model and developing cor-
responding optimized segmented regression (OSR) models. This study illustrates the application of OSR models 
to estimate the long-term impact of a national free delivery service policy intervention in Ethiopia.

Results Regardless of the choice of transition length ( L ) and distribution patterns of intervention effects, the OSR 
models outperformed the CSR model in terms of mean square error (MSE), indicating the existence of a transition 
period and the validity of our model’s assumptions. However, the estimates of long-term impacts using OSR models 
are sensitive to the selection of L, highlighting the importance of reasonable parameter specification. We propose 
a data-driven approach to select the transition period length to address this issue.

Conclusions Overall, our OSR models provide a powerful tool for modeling intervention effects during the transition 
period, with a superior model fit and more accurate estimates of long-term impacts. Our study highlights the impor-
tance of appropriate statistical methods for analyzing ITS data and provides a useful framework for future research.

Keywords Segmented regression, Transition period, Intervention evaluation, Cumulative distribution functions, 
Distribution patterns

Background
The interrupted time series (ITS) is most commonly used 
to evaluate the effects of interventions such as quality 
improvement programs or health policies [1, 2] and is a 
powerful quasi-experimental design [2] especially when 

randomized controlled trials are impossible, unethical, or 
not feasible [3–5].

The most popular statistical methodology for ITS 
time-series data of interventions is the classic segmented 
regression (CSR) [6, 7], which is a potent method for 
accounting for underlying trends and has a high ability 
to infer causation [8]. To distinguish between the pre- 
and post-intervention phases, the CSR model restricts 
the interruption to a predetermined time point in the 
outcome time series [9]. The impact of interventions is 
frequently portrayed in CSR as instant, immediate, and 
leapfrogging at a fixed point [7].

However, the immediate effect of the intervention 
may not always hold, which is inconsistent with CSR 
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assumptions. Many studies have shown that there may 
be a transition period between the pre- and post-inter-
vention phases [2, 10, 11]. Because interventions may 
be effective over a prolonged period, or there may be a 
brief period of adjustment before interventions’ lasting 
impacts on the outcome time series become apparent 
[2]. First, interventions may have been introduced over 
time. For example, in England’s 2012 Health and Social 
Care Act, the Clinical Commissioning Groups first took 
on the task in April 2012 and eventually took over full 
budget responsibility in March 2013; therefore, there 
was a one-year transition period before the intervention 
was fully implemented [12]. Second, interventions may 
require a brief adjustment period (training required for 
intervention implementation). For instance, the Clini-
cal Nurse Leader intervention program launched by the 
American Association of Colleges of Nursing, aimed 
to enhance healthcare quality, and the nurses involved 
required training for several months before the program 
was formally implemented [13]. The nurses put what they 
learned into practice in their clinical work during the 
training period, which allows the intervention to generate 
an adjustment period before its fully functional [9]. Simi-
lar intervention training was scheduled for the imple-
mentation of the free maternal health services policy in 
Kenya [14]. Such training is necessary for interventions 
to improve healthcare quality and equity.

In the aforementioned examples, the effects of inter-
ventions may be released during the transition period. 
That is, the intervention gradually shows the effect after 
the predetermined interruption (within the usually 
defined “post-intervention phase”). However, the CSR 
model fails to model this period precisely. For the time 
points of the transition period, the CSR model either 
ignores them to model the entire outcome time series 
directly or removes them and then models the remaining 
time points [6, 15]. For example, in evaluating the effect 
of pay for performance on hypertension in the United 
Kingdom, the period corresponding to the stepwise 
implementation of the intervention was excluded from 
the interrupted time-series analysis [16]. As research-
ers chose to exclude the transition period, this censor-
ing (removing the transition period) not only leaves out 
data but could also distort parameter estimations on the 
effect of interventions [17]. If an intervention is found to 
be effective based on an inaccurate or biased estimation 
of its effects, resources may be allocated to scale up the 
intervention, which could potentially waste resources, 
and divert attention from other effective interventions 
[18, 19].

To solve this problem, we propose an optimized seg-
mented regression (OSR) model to capture different dis-
tribution patterns of the intervention effects during the 

transition period using probability density functions 
(PDFs) types. We then utilize the corresponding cumu-
lative distribution functions (CDFs) of the above PDFs to 
model the effects of the interventions during the transition 
period and introduce them into the CSR model. The transi-
tion period commenced when the intervention was initially 
introduced, and the length of the transition period reflects 
the time horizon over which interventions are effective or 
the length of the required training time for intervention 
implementation. Furthermore, CDFs can manifest in vari-
ous forms, reflecting different distributions of intervention 
effects. In this study, we discuss four common distribu-
tions, namely uniform distribution, normal distribution, 
log-normal distribution (right-skewed distribution), and 
log-normal flip distribution (left-skewed distribution), 
to characterize the possible distributions of intervention 
effects during the transition period.

In this study, we first describe the steps of the optimized 
model. Then taking the evaluation of the free delivery ser-
vice policy in five Ethiopian health centers as an empirical 
study example [20], we estimated the long-term impact 
of the free delivery service policy using the CSR model 
and OSR models with different CDFs. In this process, we 
suggest a possible data-driven approach for selecting the 
length of the transition period using the mean squared 
error (MSE) as a measure of the goodness of fit of the OSR 
model. By comparing the estimated long-term impacts of 
the models, we illustrated the advantages and disadvan-
tages of the optimized models and their applicability.

Models
Classic segmented regression (CSR)

Yt is the value of the outcome series at time point  t . 
time is an indicator variable of the time point 
( time = 1, 2, 3, . . . ,Te ) and spans the first and last obser-
vation points. T0 is the time point at which the interven-
tion is implemented (nominal intervention time), and Te 
is the length of the entire time series. A dummy variable, 
intervention , was used to represent the implementation 
of the intervention. The dummy variables 0 and 1 values 
represent pre- and post-intervention, respectively. The 
time elapsed after the nominal implementation of the 
intervention is monitored using the post-time indicator 
variable. The value of post-time is first set to 1 during the 
post-implementation phase and then increases over time 
( post-time = 1, 2, 3, . . . , Te − T0 < Te ). The random 
error term for time point t isεt . Before the implementa-
tion, the outcome series’ baseline trend is depicted by 
β1 . β2 reflects the instant effect of the intervention on Yt . 

(1)
Yt = β0 + β1 × time + β2 × intervention+ β3 × post-time + εt .



Page 3 of 13Zhang et al. Global Health Research and Policy            (2023) 8:29  

The long-term impact of the intervention consists in the 
change in the trend of the outcome time series (slopes), 
represented byβ3 . The matrix expression of Eq. (1) is:

where

Optimized segmented regression (OSR)
In the optimized model (Eq. 3), we model the transition 
period using different forms of CDFs as follows:

The piecewise function F(t) is:

where T0 is the nominal intervention time and has the 
same definition as the CSR model. T2 is the end time 
of the transition period, T2 = T0 + L , where L stands 
for “transition length”. The effect of the intervention is 
assumed to last from T0 (first implementation) to T2 (fully 
valid): the transition period [T0,T2] . CDF(t) represent the 
CDFs of the different distribution patterns of the inter-
vention effect during the transition period.

The variable assignments ( time , intervention , and 
post-time ) of the optimized model and the meanings of 
the corresponding coefficients were the same as the CSR 
model. The matrix expression of Eq. (3) is:

where

(2)Y = XCSR ∗ β + ε;β = [β0,β1,β2,β3]
T ,

XCSR =
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(3)
Yt =β0 + β1 × time + β2 × F(t)× intervention

+ β3 × F(t)× post-time + εt .

(4)F(t) =
{

CDF(t − T0), T0 < t ≤ T2;
1, T2 < t

.

(5)Y = XOSR ∗ β + ε;β = [β0,β1,β2,β3]
T ,
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Distribution patterns of intervention effects—CDFs
CDF(t) are the CDFs of the corresponding PDFs for the 
different distribution patterns of the intervention effect 
during the transition period. The PDFs represent how the 
effect of the intervention is distributed during the transi-
tion period [T0,T2] and the values of the corresponding 
CDFs taken at specific points are used for modeling, that 
is, CDF(1), . . . ,CDF(L) . In this study, we mainly discuss 
the common distributions: (1) uniform distribution, (2) 
normal distribution, (3) log-normal distribution (right-
skewed distribution), and (4) log-normal flip distribution 
(left-skewed distribution). The CDFs and the correspond-
ing PDFs are shown in Fig. 1.

For the normal and log-normal distributions, their 
PDFs are respectively defined in the domain [−∞,+∞] 
and [0,+∞] . We truncated the PDFs so that we can 
describe the effect of the intervention at a fixed interval 
[T0,T2] . The probability of occurrence of a fixed interval 
can be determined by integrating the PDF. For the nor-
mal and log-normal distributions, we chose 
(µ− 3σ ,µ+ 3σ ) and (eµ−3σ , eµ+3σ ) , respectively, to 
truncate them such that the probability of occurrence in 
the fixed interval is up to 99.97%. Matching the trun-
cated interval to our assumed time range [T0,T2] , we 

have 
{

T0 = µ− 3σ
T2 = µ+ 3σ

 for the normal distribution and 
{

T0 = eµ−3σ

T2 = eµ+3σ for the log-normal distribution. The inter-

vention was essentially fully effective at [T0,T2] . The 
truncated intervals of the normal and log-normal distri-
butions are shown in Fig. 2. For the log-normal flip dis-
tribution, we only needed to apply an axisymmetric flip 
transformation to the truncated log-normal distribution. 
The log-normal and log-normal flip distributions repre-
sented the right-skewed and the left-skewed distribu-
tions, respectively, and accordingly indicated that 
intervention effects are concentrated in the front or the 
back part of the transition period [T0,T2].

Uniform distribution pattern (UD) For a uniform distri-
bution in the interval [T0,T2] , its PDF and CDF are:

Then CDFUD = [CDFUD(1), . . . ,CDFUD(L)] =
1
L
, . . . , 1

.

Normal distribution pattern (ND) For a normal distri-
bution, its PDF and CDF are:

{

PDFUD(t) = 1
L ;

CDFUD(t) = t
L ;

1 ≤ t ≤ L.
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The PDF of the normal distribution is an infinite inte-
gral; we truncated its PDF and calculated its mean µ 

and standard deviation σ , as 
{

σ = L
6 ;

µ = T0 + 3σ .
 At one 

specific time point t,

{

PDFND(x) = 1√
2πσ

exp
(

− (x−µ)2

2σ 2

)

;
CDFND(x) =

∫ x
−∞ PDFND

(

y
)

dy;
−∞ ≤ x ≤ +∞.

Then CDFND = [CDFND(1), . . . ,CDFND(L)]

=

[

∫

T0+1

T0
PDFND(x)dx, . . . ,

∫

T2

T0
PDFND(x)dx

]

.

CDFND(t) =
∫ T0+t

T0

PDFND(x)dx; 1 ≤ t ≤ L.

Fig. 1 Schematic diagram of CDFs and corresponding PDFs for different distribution patterns of intervention effects

Fig. 2 Schematic diagram of the truncated probability distribution for the normal and lognormal distributions
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Log‑normal distribution pattern (LND) For a log-
normal distribution, in its definition domain [0,+∞] , 
its PDF and CDF are:

When an upper limit exists, this integral cannot be 
solved using algebraic operations; its integral is usually 
expressed in the form of an error function as follows.

Assuming that CDFLND(x) = 1
2

{

1+ erf
[

(ln x−µ)√
2σ

]}

 = 

0.5, with the integral symmetry, the median coordinate 
of the log-normal distribution is x = eµ. The corre-
sponding coordinate interval where the sample falls 
near the median with a distance of 3σ standard devia-
tion is (eµ−3σ , eµ+3σ ). Here, we used the same strategy 
as that for the truncated PDFs in the normal distribu-
tion. However, the log-normal distribution is skewed; 
thus, we additionally set its skewness ratio, which is 
defined by the ratio of the release time of the half effect 
of the intervention in a total transition period of inter-
vention, i.e., Ratio = eµ−eµ−3σ

eµ+3σ−eµ−3σ  . For instance, in the 
context of a 12-session training course spanning three 
months, the parameter Ratio=1

3 of the lognormal distri-
bution implies that half of the training sessions were 
concluded within the initial month, specifically six ses-
sions. The degree of skewness, denoted by the Ratio , 
depends on the skewness of the actual intervention 
effect during the transition period [T0,T2] . Correspond-
ingly, we truncated its PDF and calculated its mean µ 

and standard deviation σ , as 
{

eµ − eµ−3σ = Ratio ∗ L;
eµ+3σ − eµ−3σ = L.

 

At one specific time point t,

Then CDFLND = [CDFLND(1), . . . ,CDFLND(L)]

=
[

1
2

{

1+ erf

[

(ln(T0+1)−µ)√
2σ

]}

, . . . , 1
2

{

1+ erf

[

(lnT2−µ)√
2σ

]}]

.

Log‑normal flip distribution pattern (LNFD) For the log-
normal flip distribution, we applied only an axisymmetric 
flip transformation to the truncated log-normal distribu-
tion. We chose the midpoint coordinates x = T0 + L

2 of 
the transition period as the axis of symmetry to perform 
the axisymmetric flip transformation of the log-normal 











PDFLND(x) = 1

xσ
√
2π

exp
�

− (ln x−µ)2

2σ 2

�

;

CDFLND(x) =
� x
0 PDFLND(y)dy =

� x
0

1

yσ
√
2π

e
− (ln y−µ)2

2σ2 dy =
� x
0

1√
π
e
− (ln y−µ)2

2σ2 d
�

(ln y−µ)√
2σ

� .

CDFLND(x) =
1

2

{

1+ erf

[

(ln x − µ)
√
2σ

]}

; erf (x) =
2

√
π

x
∫
0
e−y2dy.

CDFLND(t) =
1

2

{

1+ erf

[

(ln(T0 + t)− µ)
√
2σ

]}

, 1 ≤ t ≤ L.

distribution, allowing us to obtain the log-normal flip PDF 
and integrate it to obtain its CDF. The schematic diagram 
of the axisymmetric flip transformation is shown in Fig. 3.

According to the symmetry of the axisymmetric flip 
transformation, then we have

By modeling the four above-mentioned distribution 
patterns of the intervention effect, we developed four 
OSR branching models: OSR-UD, OSR-ND, OSR-LND, 
and OSR-LNFD.

Length of the transition period
In most cases, the length L of the transition period and 
the distribution pattern of the intervention effect are 
determined by the implementation process. When there 
was no information about the implementation pro-
cess, we used a data-driven approach to select L for the 
above four distribution patterns of intervention effect 
and described the application process of the optimized 
model.

First, we set the maximum possible range for L selec-
tion, that is, the Lm ( Lm = max L ). We then applied 
the optimized OSR model directly to all scenarios 
( L = 0, 1, 2, . . . , Lm ), and Lm + 1 scenarios for each OSR 
branching model for a total of 4 × (Lm + 1) scenarios. 
L = 0 corresponds to the CSR model; that is, there is no 
transition period. For the different distribution patterns 
of the intervention effect, we selected the value of L cor-
responding to the minimum MSE in all scenarios.

Application data analysis
Data description
In this study, we used raw data from a published research 
article [20] titled ‘Effect of Implementing a Free Delivery 
Service Policy on Women’s Utilization of Facility‑Based 
Delivery in Central Ethiopia: An Interrupted Time Series 
Analysis’, to test and compare the CSR model and our 
optimized models. The raw data are provided in the sup-
plementary file of the above research article and can be 
downloaded directly from the Journal of Pregnancy [20].

In Ethiopia, facility delivery services were not widely 
available or used. To encourage mothers to give birth in 

CDFLNDF = [CDFLNDF (1), . . . ,CDFLNDF (L− 1),CDFLNDF (L)]

= [CDFLND(L)− CDFLND(L− 1), . . . ,CDFLND(L)

−CDFLND(1),CDFLND(L)].



Page 6 of 13Zhang et al. Global Health Research and Policy            (2023) 8:29 

health facilities, the Ethiopian government implemented 
a policy of free delivery services in all public health facili-
ties in July 2013. The government established a primary 
health care facility in the East Shewa administrative 
region where the national free delivery service interven-
tion was implemented in all public health centers. Pri-
mary-level care has been established by the government, 
which consists of health posts, health centers (HCs), and 
primary/district hospitals. Five HCs (Adama, Awash-
melkasa, Bishoftu, Modjo, and Walinchity) with complete 
data from the previous nine years were chosen. For the 
nine years from July 2007 to June 2016, 108 data points 
were available, including facility-based usage of delivery 
services (72 pre- and 36 post-intervention phases). The 
total number of monthly births in the five HCs men-
tioned above served as the outcome variable (Fig. 4).

The Ethiopian government implemented a national free 
delivery service. After the formal intervention implemen-
tation (2013/07), the Ethiopian government undertook a 
series of works to get this policy intervention fully off the 
ground, such as purchasing emergency vehicles, increas-
ing the number of beds in health facilities, and related 
delivery equipment for women, and training relevant 
health care workers. Additionally, most pregnant women 
do not enjoy the benefits immediately if the gap between 
policy advocacy and public awareness is considered. 

Meanwhile, even if women in the Shewa region learned 
about the free delivery service policy when the interven-
tion was formally implemented (2013/07) and became 
pregnant immediately, they only gave birth after nearly 
ten months. Therefore, the intervention effect cannot be 
fully interrupted at the time point when the intervention 
is implemented, as assumed by the CSR model. Thus, this 
intervention is considered an ideal application case for 
the optimized models.

Selection of the length of the transition period
Considering the gap between policy advocacy and pub-
lic awareness and the length of a woman’s pregnancy, we 
assumed that the maximum range of L was 10  months, 
that is, Lm = 10 . Among the possible scenario decision 
sets ( L = 0, 1, 2, . . . , 10 ), the L was selected based on the 
minimum MSE of the model application. For the LND 
pattern, we additionally assumed the Ratio = 1

3 , namely, 
the half-effect release time of the national free delivery 
service intervention accounted for 13 of the total transition 
period. Accordingly, for the LNFD pattern, the half-effect 
release time of the national free delivery service inter-
vention accounted for 23 = 1− 1

3 of the total transition 
period. The MSEs of the optimized model for all scenar-
ios (all possible L ) of the four intervention effect patterns 
are shown in Fig. 5.

Fig. 3 PDFs and CDFs of log-normal distribution and log-normal flip distribution
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From Fig. 5, we learned that the MSEs of the OSR mod-
els under different distribution patterns of the interven-
tion effect were smaller than those of the CSR model 
( L = 0 ), regardless of L , indicating that the OSR models 
fit the data better. In the different OSR models, with the 
increase in L , the change trajectories of the MSEs are 
different.

Taking the minimum MSE as the selection metric, dif-
ferent OSR models selected different transition lengths. 
The results of the selected L for the four distribution 
patterns of the intervention effect and the correspond-
ing model statistics are presented in Table  1. As shown 
in Fig. 5 and Table 1, the selected L for the UD pattern 
of intervention effects was 8, that is, T2 were 8  months 
after T0 . The selected L for the ND, LND and LNFD pat-
terns were 5, 10, and 3, respectively. Among the four dis-
tribution patterns of the intervention effect, the OSR-UD 
achieved the smallest MSE (408.5852).

In Additional file 1: Fig. S1, there were parameter esti-
mation result planes and corresponding external stu-
dentized residuals for different distribution patterns of 
intervention effect, which indicated suitable fits.

In addition to MSE, the mean absolute error (MAE), 
mean absolute percentage error (MAPE), and median 
absolute deviation (MAD) can also be used as model fit 
metrics. The results of the L selection corresponding to 
the minimum of the other model fit metrics are shown in 
the Additional file 2: Table S1 and Additional file 3: Fig. 
S2, Additional file 4: Fig. S3, Additional file 5: Fig. S4. Dif-
ferent model fit metrics may lead to different selection 
results for L.

Results of modeling
Results of models with selected L
For intervention evaluation, the long-term impact β3 is 
the most important evaluation indicator [21]. The results 
of the parameter estimation for the classic and four 
optimized models are listed in Table 2. We find hetero-
geneity in the parameter estimation results between the 
CSR and OSR models. The long-term impact estimate 
̂β3 1.4251 (95%CI: 0.6574, 2.1928) of the CSR model was 
higher than the estimates of the OSR model; specifically, 
the estimates were 0.1755 (−  0.6432, 0.9942), 0.7318 

Fig. 4 Outcome time series of total monthly births. July 2007 and June 2016 are the start and end time points, respectively, of the time series, 
while June 2013 represents the nominal intervention time point (free delivery services policy). The shaded area in the figure represents an example 
scenario of the transition period [T0, T2] corresponding to L = 10
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(− 0.0394, 1.5030), 0.4045 (− 0.4036, 1.2125) and 0.8751 
(0.1241, 1.6260) for OSR-UD, OSR-ND, OSR-LND, and 
OSR-LNFD models, respectively. Compared with the 
OSR models, the CSR model overestimated the long-
term impact ̂β3 . It is worth noting that OSR-UD, OSR-
ND, and OSR-LND had long-term impacts estimates 
greater than zero, indicating positive long-term impacts 

of the interventions; however, these were not statistically 
significant.

̂β3 estimates for all possible scenarios of L
We estimated the long-term impact ̂β3 of interven-
tion effects for all possible length scenarios with OSR-
UD, OSR-ND, OSR-LND, and OSR-LNFD models; the 

Fig. 5 Mean squared errors under different distribution patterns of the intervention effect. The heights of the bars indicate the magnitude 
of the mean-squared error (MSE). The horizontal axis represents the different lengths of the transition period L . Different colors represent different 
methods. The shaded parts of the figure represent the maximum and minimum ranges of the different methods for the corresponding MSE. When 
L = 0 , the OSR model degenerates into the CSR model

Table 1 L selected results for four distribution patterns of intervention effect

UD: uniform distribution; ND: normal distribution; LND: log-normal distribution; LNFD: log-normal flip distribution. MSE: mean square error. R2 , F , P , and EEV are the 
model statistics. R2 is the coefficient of determination and indicates the model’s goodness of fit. The F is the test statistic of the F-test in the regression model, and P is 
the corresponding p-value. EEV: estimate of error variance

Method L MSE R2 F P EEV

CSR 0 498.4159 0.8015 140.0032 < 0.001 517.5858

OSR-UD 8 408.5852 0.8373 178.4058 < 0.001 424.3000

OSR-ND 5 425.0226 0.8308 170.1654 < 0.001 441.3696

OSR-LND 10 421.5121 0.8322 171.8713 < 0.001 437.7241

OSR-LNFD 3 423.4491 0.8314 170.9266 < 0.001 439.7356
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corresponding results are shown in Fig.  6. The esti-
mates of ̂β3 were sensitive to the length of the transition 
period L . With an increase in L , the estimates of long-
term impact ̂β3 kept decreasing for all four types of 
OSR models. There were slight differences between the 
estimates of different OSR models with the same L . For 
the outcome time series analyzed in this study, OSR-
LND tended to provide the largest long-term impact 
estimates, whereas OSR-LNFD did the opposite. When 
L was too large, some OSR models (OSR-UD and OSR-
LNFD) estimated a negative long-term impact of the 

national free delivery service intervention, which was 
not convincing.

We presented the other coefficient estimate results 
of different OSR models under all possible length sce-
narios in the Additional file  6: Table  S2, Additional 
file  7: Table  S3, and Additional file  8: Table  S4 corre-
spond to ̂β0 , ̂β1 and ̂β2 , respectively. Additional file  6: 
Table S2 and Additional file 7: Table S3 showed that the 
estimates of ̂β0 and ̂β1 were almost the same for differ-
ent choices of L . While the estimates of ̂β2 were sensi-
tive to the length L of the transition period, as shown 

Table 2 Coefficients and 95% confidence intervals for different models

UD: uniform distribution; ND: normal distribution; LND: log-normal distribution; LNFD: log-normal flip distribution

Method L ̂β0 (95% CI) ̂β1 (95% CI) ̂β2 (95% CI) ̂β3 (95% CI)

CSR 0 189.3106 (178.5652,200.0561) 0.2434 (− 0.0124,0.4992) 52.8540 (34.2369,71.4712) 1.4251 (0.6574,2.1928)

OSR-UD 8 189.7346 (180.1447,199.3244) 0.2264 (0.0042,0.4486) 85.8777 (64.4468,107.3086) 0.1755 
(− 0.6432,0.9942)

OSR-ND 5 189.8157 (179.9989,199.6325) 0.2228 (− 0.0061,0.4517) 71.5910 (52.4684,90.7136) 0.7318 
(− 0.0394,1.5030)

OSR-LND 10 186.0201 (176.2252,195.8151) 0.2408 (0.0154,0.4662) 78.7880 (58.2046,99.3713) 0.4045 
(− 0.4036,1.2125)

OSR-LNFD 3 190.1878 (180.3650,200.0105) 0.2080 (− 0.0221,0.4382) 69.0397 (50.6087,87.4706) 0.8751 (0.1241,1.6260)

Fig. 6 ̂β3 and corresponding 95% CIs for all scenarios. The median of the box-and-whisker diagram is the estimated value ̂β3 , and the lower 
and upper whiskers are the lower and upper limits of the 95% confidence interval of ̂β3 , respectively. In the legend of the above figure, Estimate 
represents ̂β3 estimate result, and Estimate L and Estimate U represent the lower and upper limits of ̂β3 95% CIs, respectively
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in Additional file 8: Table S4, the estimated ̂β2 values of 
the different OSR models increased as L increased.

Discussion
In this study, to characterize different distribution pat-
terns of intervention effects during the transition period, 
we introduced different CDFs to the CSR model and pro-
posed the corresponding OSR-UD, OSR-ND, OSR-LND, 
and OSR-LNFD models. Using the national free delivery 
service policy intervention in Ethiopia as an empirical 
study, the OSR models fit the outcome time series (the 
total number of births per month in the five Ethiopian 
health centers) better than the CSR model based on the 
model fit metric MSE. In this process, we suggest a possi-
ble data-driven approach to select the length of the tran-
sition period for OSR models by using MSE as a fitness 
metric.

The existence of a transition period between the pre- 
and post-intervention phases is common, especially for 
policy interventions to improve healthcare quality and 
equity [22, 23]. Regardless of the L choice, the MSE of 
the OSR models under different distribution patterns of 
the intervention effect was smaller than that of the CSR 
model, indicating that the assumption of the OSR model 
for the existence of the transition period was reasonable 
and the corresponding model optimization was more 
consistent with the actual characteristics of the real data.

Although OSR models fitted the data better than did 
the CSR model, there was heterogeneity in the long-term 
impact estimates ̂β3 of interventions when L and the dis-
tribution pattern of the intervention effects during the 
transition period (UD, ND, LND, and LNFD) varied. The 
modeling results were especially sensitive to change in L . 
For example, in the current study, when the length of the 
transition period was too large, and some specific distri-
bution patterns (UD and LNFD) were chosen, the OSR 
models might estimate non-convincing results based 
on the empirical study. In addition, some estimates of 
long-term impacts may not be statistically significant. 
Therefore, the selection of L and distribution patterns 
of intervention effects are critical for the OSR models, 
which is also a difficulty in conducting the OSR analy-
sis highlighted in this study. Notably, there could be two 
possible approaches for selecting L and the distribution 
patterns: the implementation-driven and the data-driven 
approach.

Under the implementation-driven approach, the length 
of the transition period and the distribution patterns of 
intervention effects can be determined by the researcher 
according to the implementation process. The interven-
tion implementer mastered the exact information about 
the intervention process [24–26]. For example, in the 
Ethiopian free delivery service policy study, the transition 

period was defined as the duration between the begin-
ning and end of the training of medical staff; however, 
this was not reported or considered in the original 
study [20]. For the four possible distribution patterns we 
assumed, the most appropriate one based on the training 
process, such as the frequency of training and number of 
people trained per session, could also be defined. From 
this sense, the parameters set by the implementation-
driven approach are in line with the intervention process 
and have practical significance [27, 28].

Although it is better to select L and the distribution 
pattern of intervention effect in line with the intervention 
process, this information is not always accessible to the 
public. In this study, a data-driven approach was adopted. 
The choice of L should strike a balance between being 
data-driven with minimal metrics (MSE or other possi-
ble metrics) and being simple enough to interpret from 
the interventional perspective of epidemiology, medicine, 
and policy [29]. From a purely data-driven perspective, 
the results of the choice of L are not entirely consistent 
when different model-fitting metrics of goodness (e.g., 
MSE, MAE, MAPE, MAD) are used. Among the differ-
ent metrics, confusion remains regarding their superi-
ority. None of the indicators is inherently superior, and 
their relative superiority is conditional [30, 31]. The MAE 
is superior for Laplace errors, whereas the other metrics 
are preferable when the errors follow other distributions 
[32]. So far, the residual distribution type after applying 
the OSR models is unknown. Given this, we did not have 
a consensus on an “optimal’’ metric for selected L [33]. 
In addition, the excessive pursuit of a minimum of one 
metric is most likely to result in overfitting of the model 
[34]. Therefore, the data-driven approach for L is only 
one of the reference methods, and it is more appropri-
ate to choose it according to the actual situation of the 
intervention.

Moreover, the uniqueness of the selected model param-
eters is not always necessary. Referring to the idea of the 
distributed lag model (DLM) [35, 36], we can describe 
the entire variance situation ( L ) of long-term impact 
estimates by specifying a series of transition lengths L , 
as illustrated in Fig. 6. Specifying a range of L is one part 
of the sensitivity analysis [37], which is vital for judging 
the robustness of the corresponding estimates. In conclu-
sion, for the selection of model parameters, our recom-
mendation is, first, to conform to their practical meaning 
according to the implementation process; second, to take 
a possible data-driven approach; finally to calculate the 
estimated values of the model parameters for all possi-
ble cases and describe the entire variance situation of the 
estimated values.

In this study, we propose OSR models with four dis-
tribution patterns of intervention effects during the 
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transition period and utilized them to estimate the spe-
cific values of the long-term impact of policy interven-
tion. We examined real data and explained the modeling 
procedures in detail to provide practical insights into the 
impact of Ethiopia’s free delivery service policy interven-
tion on the total number of births per month at the five 
health centers, providing new insights into the field of 
intervention evaluation.

A key strength and new aspect of this study is the 
inclusion of the intervention effects of the transition 
period into the model, rather than ignoring or cursorily 
removing the time points within the transition period. 
To correspond to the different distribution patterns 
of intervention effects during the transition period in 
practice, we abstracted four different forms of CDFs 
(UD, ND, LND, and LNFD), and proposed correspond-
ingly different OSR models. In addition, for the selec-
tion of the length of the transition period, we suggested 
a data-driven selection approach, although it has some 
shortcomings.

Taking a specific policy intervention as an example, we 
conducted an empirical study to estimate the long-term 
impact of policy intervention. Simultaneously, we esti-
mated and compared coefficients that reflected the long-
term impacts of the intervention in the OSR model under 
44 scenarios, considering the distribution patterns and L . 
This study provides a comprehensive description of the 
estimated values of OSR models under different param-
eter settings and provides a reference for analyzing their 
sensitivity and subsequent research.

There are a few limitations of this study. First, we 
did not fundamentally offer a selected method for L , 
although we suggested a possible data-driven approach. 
The choice of L still depends more on its practical sig-
nificance without its fixed paradigm. Second, we examine 
our OSR model using a single policy intervention dataset 
with different parameter settings to check the sensitiv-
ity of the estimating results. In addition, more re-exam-
inations of the OSR models using practical datasets are 
encouraged to be done. Thirdly, the current OSR models 
are only applicable for continuous outcome variables and 
have difficulty adapting to categorical data. We need to 
further improve the OSR model to accommodate such 
data types.

Conclusions
The CSR model may not always be sufficient when 
there is a transition period between the pre- and post-
intervention phases. In such cases, our OSR models 
can be a potential alternative, because they use differ-
ent CDFs to characterize the distribution patterns of 
the intervention effects during the transition period. 
To illustrate the effectiveness of the OSR models, we 

conducted an empirical study on national free delivery 
service policy intervention in Ethiopia. We estimated 
the long-term impact of policy intervention using both 
the CSR model and different OSR models and com-
pared their estimated results. Our findings suggest that 
the OSR models, which are optimized to match the 
actual characteristics of the data, are powerful tools for 
accurately estimating the long-term impacts of inter-
ventions. These models demonstrate smaller MSEs 
and provide more accurate estimates of the long-term 
impacts than the CSR model. Our study emphasizes 
the importance of using appropriate statistical methods 
when evaluating intervention effects in the presence of 
a transition period.
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