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Abstract

Background: In disease mapping field, researchers often encounter data from multiple sources. Such data are
fraught with challenges such as lack of a representative sample, often incomplete and most of which may have
measurement errors, and may be spatially and temporally misaligned. This paper presents a joint model in the
effort to deal with the sampling bias and misalignment.

Methods: A joint (bivariate) spatial model was applied to estimate HIV prevalence using two sources: 2014 National
HIV Sentinel survey (NHSS) among pregnant women aged 15–49 years attending antenatal care (ANC) and the
2013 Namibia Demographic and Health Surveys (NDHS).

Results: Findings revealed that health districts and constituencies in the northern part of Namibia were found to
be highly associated with HIV infection. Also, the study showed that place of residence, gender, gravida, marital
status, number of kids dead, wealth index, education, and condom use were significantly associated with HIV
infection in Namibia.

Conclusion: This study had shown determinants of HIV infection in Namibia and had revealed areas at high risk
through HIV prevalence mapping. Moreover, a joint modelling approach was used in order to deal with spatially
misaligned data. Finally, it was shown that prediction of HIV prevalence using the NDHS data source can be
enhanced by jointly modelling other HIV data such as NHSS data. These findings would help Namibia to tailor
national intervention strategies for specific regions and groups of population.
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Background
Although a downwards change in the trajectory of
AIDS epidemic has been achieved worldwide [1], by
the end of 2014, 36.9 million people were estimated to
live with HIV [2], of which about 70% (25.8 million)
are found in sub-Sahara Africa. In 2014, it was esti-
mated that the global total of 2 million of people were

newly infected with HIV, a large portion (1.4 million)
of which is said to be in sub-Sahara Africa [2].
Namibia is one country where the HIV prevalence

is high [3]. In 2014, the number of people living with
HIV among adults and children was estimated to be
around 26,000, of which 11,000 were newly infected
[3]. The National HIV Sentinel survey (NHSS) and
Namibia Demographic and Health Survey (NDHS) are
the commonly used tools to monitor the prevalence
HIV trend in the country. Indeed, the analyses of data
resulting from these surveys are vital in generating
strategic information for evaluating the effectiveness
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of programs and policies and enabling to improve
and redesign programmes. However, each one of the
two data sources has its own weaknesses that may
lead to inaccurate estimation of HIV prevalence. For
the former, limitations such as accessibility of ANC
sites and exclusion of some categories of the popula-
tion (e.g. men and non-pregnant women) are well
documented [4]. The latter suffers most of times from
a significant non-response drawback [4].
In the face of these limitations, a joint analysis of data

from different sources has been proven to be useful [5].
It avoids multiple testing on same data, helps dealing
with identifiability in random effect parameters estima-
tion, and increases precision and efficiency of param-
eter estimates. Further, the multivariate analysis
technique can help to capture disease specific covari-
ates and as well as to carry pairwise and cross-
covariances inferences between different sources [5].
Different approaches of multivariate techniques that in-
clude the multivariate normal distribution, iterative
generalised least squares (IGLS) method, multivariate
conditional autoregressive (MCAR) modelling, and the
shared-component modelling are commonly used in
mapping of multiple diseases. Although multivariate
normal and IGLS methods allow modelling different
sources simultaneously, these two methods underesti-
mate the variation associated with sources [5]. In
spatial disease mapping, one way to account for within
and/or between areal associations is to employ MCAR
modelling approach [5]. But due to high parameterisa-
tion, the computation and interpretation of parameters
becomes cumbersome. Recent applications of MCAR
modelling approaches include [6, 7]. Recently, shared-
component model pioneered by Knorr-Held and Best
[8] had been extensively used in joint analysis of mul-
tiple health outcomes (e.g. [4, 5, 8–11]). This model
splits the disease profile into two components, namely
the disease-specific component representing spatially
varying factors, and the shared component which is a
proxy of unobserved spatially varying factors that are
common to both or all diseases [8]. Bellier et al. [12]
had jointly analysed multiple data sources by including
an observability parameter. Guo and Carlin [13] had
used a full Bayesian approach to link longitudinal and
survival data. Other recent examples of jointly model-
ling multiple data sources include [14–18].
Even though there is a rich literature on analyses

of determinants of HIV and its geographical spread,
most of the analyses used were based on univariate
methods for different data sources. One notable
study by Manda et al. [4] had used a shared-
component modelling approach to jointly analyse
data from NDHS and ANC surveys. For the two
sources, district level HIV prevalence rates were

used and also two contextual covariates were consid-
ered as determinants of HIV. In other words, in
their study, the data were first aggregated at district
level and then a spatial bivariate modelling approach
was applied on aggregated rates. In this situation, a
misalignment in data sources is avoided. However,
this has some limitations as, for instance, many co-
variates available from ANC or NDHS would not be
used in the joint analysis. One way to include most
of ANC and/or NDHS covariates would be first to
compute averages at district level. Alternatively, a
model that allows different neighbourhood structures
may be useful as it would permit to model data
available at different block levels.
A primary objective of this study is to develop a

joint spatial model for NHSS and NDHS data, which
enables the estimation at any location of the constitu-
ency or district level while dealing with misalignment
in data.

Methods
Data
Two data sets were used in this study, namely, the
2013 Namibia Demographic and Health Survey
(NDHS) data and the 2014 National HIV Sentinel
survey (NHSS) data from women aged 15–49 attend-
ing antenatal care clinics (ANC). Table 1 provides a
list of all variables used in this study, as identified
through the literature [4, 6].

NDHS data
The sampling methodology for the 2013 Namibia
Demographic and Health Survey was a two stage

Table 1 Summary of variables used in the study by source

NDHS NHSS

Variables 1. HIV status 1. HIV status

2. Place of residence 2. Age of the respondent

3. Gender 3. Number of children born
by a mother (gravidity)

4. Age of the respondent

5. Head of household

6. Marital status

7. Number of kids dead

8. Education

9. Wealth

10. Stayed away of home

11. Sexual activity
(in last 4 months)

12. Age at first sex

13. Condom use

14. Had STI in last 12 month
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stratified cluster survey design. In the first stage, 554
enumeration areas (EAs) were selected using probabil-
ity proportional to size of EA, with stratification into
rural and urban areas. In the second stage, 20 house-
holds were selected from each EA using equal prob-
ability systematic sampling approach. One of the key
objectives of this survey was the collection of data on
knowledge and prevalence of HIV/AIDS and other
diseases such as diabetes, cardiovascular disease, can-
cer, and chronic respiratory disease [19]. To achieve
this objective, the survey included three question-
naires (Household questionnaire, woman’s question-
naire, and the man’s questionnaire) that addressed
questions on household characteristics and assessed
women’s and men’s knowledge of HIV. A total 9176
women and 3950 men formed part of 2013 NDHS in-
terviews. Further, the survey included HIV testing
amongst women and men aged between 15 and
64 years selected throughout the country. Details on
the survey methodologies used in collecting data can
be obtained from the 2013 NDHS report [19]. The
variables resulting from this survey were grouped into
four categories, namely, demographic, social, bio-
logical, and behavioural. The sample for the survey is
thought to be a representative of the general popula-
tion and also provides a vast range of population and
demographic characteristics useful in the study of
HIV prevalence and its related determinants.

NHSS data
Since 1992, every second year, a National HIV Sentinel
survey (NHSS) has been conducted by Ministry of
Health and Social Services (MoHSS) in order to deter-
mine HIV prevalence among pregnant women aged
15–49 years attending antenatal care (ANC) clinics at
public health facilities in Namibia. Since its inception,
the NHSS has expanded from 8 sites to 35 district
sites supplemented by 98 satellite facilities. The main
objectives of NHSS is to obtain reliable data that can
be used to assess the national prevalence of HIV
among pregnant women in age group of 15–49 years;
to identify socio-demographic covariates associated
with high prevalence; and to fast-track the estimation
of the spatial and temporal prevalence trends. Sam-
pling techniques, sample size and data collection
methods were based on the World Health
Organization (WHO) guidelines for conducting HIV
surveys among pregnant women and other groups [3].
For more details, the reader can refer to the surveil-
lance reports of National HIV sentinel survey [3]. In
this study, the 2014 NHSS, which was conducted from
10 March to 30 September 2014, was used. In total, of
7920 women enrolled in the 2014 NHSS, the majority
of them were multi-gravida. In the data, the following

variables were collected: age, gravidity, district, and
HIV status. Though not many covariates are provided
by NHSS, it brings an important contribution in
terms of HIV prevalence to this study as not many
non-response cases are experienced in comparison to
the NDHS. Table 1 gives a summary of variables ob-
tained from both NDHS and NHSS used in this
study.

Statistical models
Univariate modelling of data
The univariate modelling approach was achieved by
fitting a separate model for each data source as fol-
lows. Let yij be a binary indicator of HIV incidence at
location i ( si) from dataset j such that yij is one if a
disease incident is observed at location i for dataset j
and zero elsewhere. In here, the location i could be a
health district facility in a health district (for NHSS
data source) or a location in a constituency (for
NDHS data). Then yij ~ Bernouilli(pij), where pij is the
probability of a recorded incident at location i from
dataset j. Thus, the independent model fitted to data-
set ( j=1, 2) is given by;

logit pij
� �

¼ β0j þ
Xr

k
βkxijk þ f j gi

� �þ zj sið Þ; ð1Þ

with β0j represents the model intercept, xijk is the kth lin-
ear covariate of dataset j in a given health district facility
i or constituency i, fj(.) is a function of a non-linear co-
variate, gi is a vector of ages, and zj(si) is Gaussian ran-
dom field. Eq. (1) can be split into two separate
(univariate) models as follows. At the first stage of
Bayesian hierarchy,

logit pi1ð Þ ¼ β01 þ
Xr

k
βkxi1k þ f 1 gi

� �þ z1 sið Þ; ð2Þ

logit pi2ð Þ ¼ β02 þ
Xr

k
βkxi2k þ f 2 gi

� �þ z2 sið Þ; ð3Þ

For the Gaussian random field, it was assumed a
multivariate Gaussian distributionz (s) ~N(0, Σ), where
Σ is the covariance matrix. The elements of the co-
variance matrix Σ are specified as a function of the

marginal variance of the process σz and the Mat _ė rn
correlation function CorM as follows:
Σij = σzCorM(z(si), z(sj)).
The Matern correlation function is given by:

CorM z sið Þ; z sj
� �� � ¼ 21−ν

Γ νð Þ k si−k sj
��� �ν

K ν k si−k sj
��� �

;

ð4Þ
where ‖.‖ denotes the Euclidean distance, Kν(.) is the
modified Bessel function of second order, k and ν are
scale parameter and smoothness parameter, respectively.
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At the second stage of Bayesian hierarchy, inverse
Gamma prior distributions were assigned to k, ν, and σz.
For fixed effect parameters β, the study assumed weakly

informative Gaussian priors βeN 0; τ−1β I
� �

with small

precision τβ on identity matrix. In order to deal with
non-linearity effects of continuous covariates (ages), Δgi
was assumed to follow a first order random walk process
(i.e. Δgi∣Δgi − 1 ~N(Δgi − 1, σ

2)). Alternatively, a semi
parametric model that uses the penalised regression
spline approach may be used and details of the penalised
regression approach can be found elsewhere [6, 20].

Joint modelling of HIV prevalence from NDHS and NHSS
data sources
In the joint (bivariate) setting, the HIV prevalence from
NDHS data source and the HIV prevalence from NHSS
data source were modelled jointly instead of fitting sep-
arate model for each data source. In this study, a bivari-
ate modelling approach was applied using the spatial
shared component model that incorporated information
from NHSS source that might be common to NDHS
data source in order to improve the estimation of HIV
prevalence using NDHS source.
Considering the bivariate model, which pools the

two datasets, let yij be a binary indicator of HIV in-
cidence at location i form dataset j = 1 , 2. Then yij ~
Bernouilli(pij), pij is the probability of recorded HIV
incident pertaining to the jth dataset. The vectors re-
lating to all observations for the two responses were
concatenated in

Y ¼

�
y11 NA
⋮ ⋮

yn11 NA
NA y12
⋮ ⋮

NA yn22

�
, where nij is the number of obser-

vations for each response variable, j = 1 , 2.
Thus, the joint (bivariate) model is then given by;

logit pi1ð Þ ¼ β01 þ
Xr

k
βk1xi1k þ f 1 gi1

� �þ z1 sið Þ;
ð5aÞ

logit pi2ð Þ ¼ β02 þ
Xr

k
βk2xi2k þ f 2 gi2

� �þ z2 sið Þ þ γz1 sið Þ;
ð5bÞ

where each response has a vector x of linear covariates
with corresponding regression parameters βkj; gij is the
vector of ages which are assumed to follow a random
walk of order 1; z1(si) is a Gaussian random field shared
between both responses, the interaction parameter γ
links the two response variables (i.e. HIV prevalence
from NHSS and HIV prevalence from NDHS) and de-
scribes how much of the structure captured in z1(si) is
also inherent in the logit(pi2). Similar prior distributions
to those specified for univariate models were assigned
for parameters and hyperparameters of the joint model.
A summary of models to be fitted in this study is pro-
vided in Table 2.

Estimation of parameters and model diagnostics
The estimation of parameters involved evaluation of
the posterior distribution, which is the conditional
distribution of the model parameters given the ob-
served HIV data is obtained by taking the product of
likelihood function together with the prior and hyper
distributions. In this study, the posterior distribution
is given by;

p θjyij
� �

∝Πn
i¼1L yij; ; pij

� �
� Π2

g¼1 p Δgijτg−1
� �

p τg−1
� �	 


Πr
k¼1p βk

� �
p τβ−1
� �

Πj¼1

2
p zjj; kj; νj; σzk
� �

p γð Þ;
ð6Þ

where θ is a vector of all parameters.
A stochastic partial differential equation (SPDE) ap-

proach with R-INLA was employed to estimate pos-
terior marginal distributions and any other posterior
inferences. Convex hull meshes (Fig. 1) on study area
were used in order to avoid the boundary effect [21].
Figure 1 presents the subdivision of the domain of
study into a collection of non-intersecting triangles
with condition that any two triangles meet at most a
common edge or corner. The initial vertices are
placed at the locations for observations and then add-
itional vertices are added in a way that minimises the
number of triangles needed to fill up the size and

Table 2 Nested models to be fitted in this study

Model Gaussian random field Shared component covariates

MU1: Univariate model for NDHS data √ - -

MU2: Univariate model for NHSS data √ − -

MU12: Univariate model for NDHS data + covariates √ √

MU22: Univariate model for NHSS data + covariates √ √

MJ1: Bivariate model for NDHS and NHSS data √ √ -

MJ2: Bivariate model for NDHS and NHSS + covariates √ √ √
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shape of the study domain of interest (Namibia). The
polygon of triangles was extended out of the Namibia
boundaries in order to avoid boundary effects. The
best model was identified using the deviance informa-
tion criterion (DIC) given by DIC =D + 2p, where D
is the deviance evaluated at the posterior mean and p
the effective number of parameters in the model. By
the rule of thumb, the best model is one with the
smallest value of DIC.

Results
Descriptive results
Figure 2(a) shows the spatial distribution of observed
HIV prevalence in each constituency for women and
men aged between 15 and 64 years obtained from
the NDHS. This figure points out that there exist
geographical (constituency level) differences of HIV
prevalence in Namibia. Whereas Fig. 2(b) displays
the geographical distribution of observed HIV preva-
lence among pregnant women aged 15–49 years at-
tending antenatal care (ANC) clinics at public health
facilities in Namibia (HIV Sentinel survey data). Two
colours, namely purple and blue, were used to dis-
tinguish levels of HIV prevalence. The darker the
purple, the lower is the observed HIV prevalence
whereas the darker the blue, the higher is the HIV

Fig. 1 Convex hull meshes: Constrained refined Delaunay triangulation

Fig. 2 Observed HIV prevalence (in %): (a) constituencies’ HIV prevalence (2013 NDHS data); (b) health districts’ HIV prevalence (2014 NHSS data)
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prevalence. From this figure, it can be noted that
there exist spatial differences among health districts
with respect to HIV prevalence. Summaries of HIV
prevalence for both NDHS and NHS data sources
are presented in Appendix 1 (Tables 5 and 6).

Estimation of HIV prevalence
Figure 3(a) shows the estimated HIV prevalence within
health districts using NHSS data source. From this figure, it
can be deduced that in northern part of Namibia, Katima is
estimated to have the highest HIV prevalence (30 to 35%).
Furthermore, Andara, Rundu, Nakundu, Oshakati, Onand-
jokwe, okahao, Tsandi, Outapi, Eenhana, Kongo and Engela
health districts, the HIV prevalence is estimated between
15 and 20%. In central west, Walvis Bay and Usakos health
districts are estimated to be between 15 and 20% of HIV in-
fection. In south, the HIV prevalence is estimated be
around 15% in Ludertz. The rest of the health districts had
reduced association with HIV infection (the prevalence is
estimated be below 15%).
Figure 3(b) presents the estimates of prevalence derived

from NDHS data using univariate model. High HIV infec-
tion is predicted to be associated with most of the

constituencies in Caprivi region (25 to 30%). Other con-
stituencies with elevated HIV prevalence are found in
Omusati, Oshana, Oshikoto, and Kavango regions (15 and
20%). Karibib, Walvis Bay rural, Walvis Bay urban, and
Luderitz were estimated to have approximately between
10 and 20% of HIV infection. The rest of constituencies
are estimated to have HIV prevalence of around 10%.
Figure 4 provides the estimates of HIV prevalence ob-

tained from the bivariate model that pools the two data-
sets together. The bivariate model reveals an under
estimation of HIV prevalence when NDHS source is
used for estimation separated from NHSS source. Uni-
variate model estimated the prevalence to be between 0
and 30%, whereas the bivariate model estimated the HIV
prevalence to between 0 and 35%. For both data sources,
the spatial distribution of HIV infection is very similar
to the spatial distribution of HIV infection when univari-
ate models were employed.

Linear fixed effects and nonlinear effects
From Table 3, it can be noticed that model Mj2 is the
best model among all models. Thus, a summary statistics
of this model is presented in Table 4 and the

10 15 20 25

-3
0

-2
5

-2
0

-1
5

(a)

0.10

0.15

0.20

0.25

0.30

10 15 20 25

-3
0

-2
5

-2
0

-1
5

(b)

0.10

0.15

0.20

0.25

Fig. 3 Estimated HIV prevalence using separate models: (a) HIV prevalence estimates from 2014 NHSS data; (b) HIV prevalence estimates from 2013
NDHS data
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interpretation of the results is provided in the subse-
quent sections. The results of separate (univariate)
model for each data set are provided in Appendix 1 (Ta-
bles 7 and 8), respectively.

HIV risk and its determinants: NHSS data
For HSS data source, two covariates namely age and
gravida were available at district level (Table 4). The age
covariate was modelled using the first order random

walk in order to deal with the nonlinearity whereas the
gravida covariate was assumed to have linear effects on
HIV. The odds of HIV infections among pregnant
women with multi-gravida (mother had given birth to
two more children) was 1.88 times as likely as that of
women with prima-gravida (only one child born) (OR: 1.88,
95% CI: 1.52 to 2.32). Fig. 5(a) shows the relationship be-
tween the age of a pregnant woman and its effects on HIV
infection. This figure showed that the likelihood of
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Fig. 4 Estimated HIV prevalence using bivariate model: (a) HIV prevalence estimates from 2014 NHSS data; (b) HIV prevalence estimates from
2013 NDHS data

Table 3 DIC values for fitted models

Model DIC

MU1: Univariate model for NDHS data (no covariate in the model) 7011.89

MU2: Univariate model for NHSS data (no covariate in the model) 6872.59

MU12: Univariate model for NDHS data + covariates 6344.00

MU22: Univariate model for NHSS data + covariates 6388.33

MJ1: Bivariate model for DHS and NHSS data (no covariate in the model) NDHS_DIC NHSS_DIC Total DIC

7003.498 6870.218 13,873.716

MJ2: Bivariate model for DHS and NHSS + covariates NDHS_DIC NHSS_DIC Total DIC

5998.112 6355.980 12,354.09
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HIV infection follows a nonlinear growth trajectory
(black lines indicates the nonlinear trajectory whereas
the dotted lines represent its 95% credible interval).
An increase in odds of HIV infection is observed up
to a certain age and then it is followed by a decline
in the risk of HIV infection.

HIV risk and its determinants: NDHS data
For NDHS data, covariates on demographic, social, sex-
ual behaviour, and biological characteristics were avail-
able and hence used in this study. Table 4 presents the
results.
Place of residence classified as rural or urban was

significantly related to HIV infection among men and
women. The chance of HIV infection was lower for
men and women residing in rural areas compared to
those residing in urban areas (OR: 1.53, 95% CI: 1.27
to 1.84).
Gender was also found to be significantly associated

with HIV infection. The likelihood of a man being in-
fected was 0.68 times lower compared to that of a
woman (95% CI: 0.58 to 0.79).
Head of a household was found to be significantly

linked with HIV infection. Man or woman living in a
household headed by a woman had higher risk of infec-
tion compared to one living in a household headed by a
man (OR: 1.14, 95% CI: 0.97 to 1.33), though not
significant.
Men and women who were married had less risk of

infection compared to those who were never in union
(OR: 0.72, 95% CI: 0.58 to 0.89). The likelihood for
HIV was higher for widowers compered to men and
women who were never in union (OR: 1.46, 95% CI:
1.06 to 2.02). The odds of HIV infection among men

Table 4 Estimated covariate effects and their 95% credible
intervals (CI)

Joint (bivariate) model

Covariate OR 95% CI

β01 0.12 (0.07, 0.23)

Prima-gravida(Ref) 1.00

Multi-gravida 1.88 (1.52, 2.32)

β02 0.08 (0.04, 0.18)

Place of residence

Rural(Ref) 1.00

Urban 1.53 (1.27, 1.84)

Gender

Female(Ref) 1.00

Male 0.68 (0.58, 0.79)

Head of household

Male (Ref) 1.00

Female 1.14 (0.97, 1.33)

Martal status

Never in union (Ref) 1.00

Maried 0.72 (0.58, 0.89)

Living with a partner 1.41 (1.16, 1.73)

Widowed 1.46 (1.06, 2.02)

Divorced 1.07 (0.66, 1.75)

Separated 1.41 (1.04, 1.91)

Number of kids dead

No child died (Ref) 1.00

one child died 1.84 (1.48, 2.29)

More one than one child died 2.69 (1.84, 3.91)

Education

No education (Ref) 1.00

Primary 1.09 (0.87, 1.37)

Secondary 0.84 (0.66, 1.06)

Higher 0.63 (0.41, 0.96)

Wealth index

Poorest (Ref) 1.00

Poorer 0.93 (0.79, 1.09)

Middle 1.10 (0.89, 1.35)

Richer 0.78 (0.61, 0.99)

Richest 0.33 (0.24, 0.46)

Stayed away from home

Did not move away (Ref) 1.00

Moved away 0.93 (0.79, 1.09)

Sexual activity (in last 4 months)

Never had sex (Ref) 1.00

Not active 0.98 (0.90, 1.07)

Active 1.15 (1.06, 1.26)

Table 4 Estimated covariate effects and their 95% credible
intervals (CI) (Continued)

Age at first sex

Never had sex(Ref) 1.00

< 11 1.29 (0.87, 1.91)

12–.14 1.08 (0.67, 1.73)

15–.17 1.47 (0.99, 2.17)

> 18 & at first union 1.26 (0.85, 1.87)

Condom used

No (Ref) 1.00

Yes 1.78 (1.53, 2.07)

Had STI in last 12 months

No (Ref)

Yes 1.05 (0.96, 1.16)
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and women living with partners was 1.483 times higher
than that of those who were never in union (OR:1.41, 95%
CI: 1.16 to 1.73). Those who divorced had 1.07 times
higher chance of infection relative to those who were
never in union, though it is not significant (OR: 1.07, 95%
CI: 0.66 to 1.75). The chance of HIV infection for those
who separated or non-longer lived with their partners is
1.41 times higher than that of those who were never in
union (OR:1.41, 95% CI: 1.04 to 1.91).
The likelihood of infection with HIV for men and

women who had one of their children dead is as
1.84 times higher as those whom none of their chil-
dren died (OR: 1.84, 95% CI: 1.48 to 2.29). Individ-
uals who had more than one of their children dead
were 2.69 times more likely infected with HIV rela-
tive to those who did not have any of their children
dead (OR:2.69, 95% CI: 1.84 to 3.91).
Education was found to be negatively associated with

HIV infection. The likelihood of testing positive was lower
for men and women with secondary and or higher educa-
tion as compared to those with no education. For instance,
the odds of being infected with HIV was 0.63 times lower
for men and women with higher education as compared to
those with no education (OR:0.63, 95% CI: 0.41 to 0.96).
Wealth was found to be inversely associated with

HIV infection. The chance of infection with HIV was

0.78 times less for those classified as richer than that
of those classified as poorest (OR:0.78, 95% CI: 0.61
to 0.99). The men and women in the category of the
richest had 0.33 times less likelihood of get HIV as
compared to those in the category of the poorest
(OR: 0.33, 95% CI: 0.24 to 0.46). Those in the middle
class had 1.10 times odds of testing positive as com-
pared to those in lowest class (OR: 1.10, 95% CI: 0.89
to 1.37), though not significant. Although not signifi-
cant, individuals classified as poorer were 0.93 times
less likely to test positive as compared to those classi-
fied as poorest (OR: 0.93, 95% CI: 0.79 to 1.09).
Table 4 also shows that sexual behaviour characteristics

that include current sexual activity, condom use, and age at
first sex were found to be related to HIV infection. Con-
trary to general myth, condom use was found to be posi-
tively related to HIV infections. Individuals who ever used
condoms during their last sex with most recent partners
were 1.78 times at higher risk of HIV infection as compared
to those who did not use condoms during their last sex
with most recent partners (OR: 1.78, 95% CI: 1.53 to 2.07).
Individuals with history of STI in the last 12 months

were 1.05 times more likely to be HIV positive relative
to those who did not contract STI in the last 12 months
(95% CI: 0.96 to 1.16), though the difference is not
significant.
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Fig. 5 Estimated nonlinear effects of age on HIV infection and corresponding 95% credible intervals: (a) NHSS data; (b) NDHS data
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People who had been away from their homes for more
than one month in the last 12 months were found to be
less likely to be HIV positive compared to those who did
not go away from their homes for more than one month
in last 12 months (OR: 0.93, 95% CI: 0.79 to 1.09), al-
though the difference was also not significant.
Figure 5(b) shows that the odds of getting infected

with HIV increases up to a certain age and then starts
dropping at an increasing rate. This figure exhibits simi-
lar patterns to those shown in Fig. 5(a) except that the
ages of respondents for Fig. 5(a) do not go beyond 49.
The maps of spatial random effects can be obtained

from Figs. 6 and 7 in Appendix 2. Both figures show that
health districts and constituencies in northern part of
Namibia were more likely to be associated with HIV infec-
tion (i.e. positive posterior means of spatial random ef-
fects) whereas most of the rest of the health districts and
constituencies had reduced association with HIV infection
(i.e. negative posterior means spatial random effects).

Discussion
In this study, a bivariate model controlling for spatial ran-
dom effects was fitted. A full Bayesian framework through
SPDE approach with INLA was implemented by jointly
modelling the two data sources available at two different
spatial levels. Thus, this joint model approach had to deal
with data that were spatially misaligned. The bivariate
model, which used a spatial shared component that acts as a
surrogate of HIV risky behaviours among pregnant women
in order to improve the estimation of HIV prevalence using
NDHS source, was found to be more appropriate in estimat-
ing HIV prevalence. The interaction parameter γ= 2.14
(95% CI: 1.65 to 3.67), described how much of the structure
captured in the shared component and also inherent in the
NDHS HIV prevalence, was found to be significant. Hence,
the joint analysis of NDHS and ANC sources has enhanced
the estimation of HIV prevalence using the demographic
and health survey (NDHS). This finding concurs with results
from the study by Manda et al. [4].
As “everything that rises must converge” [22], it is ar-

gued that no quantity can grow for ever. Thus, the effect
of age on HIV infection was considered to follow a growth
trajectory with the two chronological patterns, namely a
gradual increase from the beginning until the maximum is
reached, and thereafter a gradual decrease. Consequently,
it could have been inappropriate to assume that there is a
linear relationship between age and the HIV infection.
Therefore, in this study, the effect of age on HIV infection
was modelled using semi-parametric regression.
For these two data sources, the relationship between age

and its effects on HIV infection followed an inverted “U”
shape. This finding agrees with other studies [6, 20].
The place of residence was found to be significantly as-

sociated with HIV infection. Individuals in urban areas

had higher risk of getting infected compared those in rural
areas. This finding has been reported in many other stud-
ies [4, 6, 20, 23]. It could be used to design focused public
campaigns against HIV/AIDS such as campaigns for vol-
unteer testing and use of condoms and antiretroviral
based on the place residence.
This study had shown that poverty levels were in-

versely associated with the likelihood of HIV infec-
tion. People in middle class, rich class, and richest
class had less risk of getting infected with HIV rela-
tive to those in lower class. In a similar study [24],
unwanted or forced sex was related to lack of re-
sources and the ability to obtain resources.
In this study, HIV infection was found to be signifi-

cantly related with head of a household. Individuals liv-
ing in a household headed by a woman were associated
with higher risk of testing positive compared to the ones
living in a household headed by a man. It has been
shown that the male-headship is a proxy of a better
socio-economic status [25], which had been proven to
be inversely related to HIV infection. This finding could
be explained by the complex of inferiority of women
[26] and the struggle to obtain leadership positions and
power to make decisions [24].
Another finding of this study is that gender was sig-

nificantly associated with HIV infection. The likelihood
of women to test HIV positive is high than that of men.
Some of the possible explanations for this finding are
gender inequality in the sex intimacy and relationship,
multiple partners perceived as prestigious for boys, and
complex of inferiority among girls in presence of boys
[26]. The gender and HIV infection relationship was
confirmed in many studies [4, 23, 24, 27].
It was found that the marital status impacts on

the HIV infection. Widowers had high likelihood of
being infected with HIV. One of the possible justifi-
cations for this finding could be that most widowers
were left by partners who died of HIV. Though dif-
ferences were not significant, odds of HIV infection
were higher for divorced individuals and those who
no-longer lived with partners compared to those
who were never in union. This result could be use-
ful in designing strategies and interventions
intended to vulnerable groups especially widowers.
Some earlier works had already indicated similar re-
sults [4, 6, 23, 27].
Another well-known finding in many studies [6,

20, 24], which was also found in this study is that
education was negatively associated with HIV infec-
tion. The likelihood of testing positive was low
among men and women with higher education as
compared to those with no education. This could be
due to fact that most of individuals with higher edu-
cation are matured and aware of the danger of HIV
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and less sexually active. Though the difference is not
significant, individuals with primary and secondary
education were found be at high risk of contracting
HIV as compared to those who never had any formal
education. This finding could be related to limited
sexual education in Namibia schools. Although life-
skills programs tailored to equip learners with know-
ledge about sexuality education are implemented in
Namibia schools, it has been argued that there is no
proper training provided to teachers in this matter
and also that students do not take this subject ser-
iously as it is not examinable [26]. As Namibia gov-
ernment is committed to provide education to all
Namibia [28], this finding could be used by the Gov-
ernment to realise the need of extending free educa-
tion to other phases of formal education in order to
increase the number of potential individuals who will
eventually achieve high education. Also, it could be
used as an indicator of a need to revise the life-
skills curriculum and implementation of exams for
this subject in order to encourage learners to take it
seriously.
Contrary to general myth, condom use was found

to be positively related to HIV infections. Individuals
who ever used condom during the last sex with most
recent partner were at higher risk of contracting HIV
as compared to those who did not condom. This un-
expected result was also reported in the work of
Ngesa, Mwambi and Achia [20]. One of the justifica-
tions provided to this finding was that men use con-
doms in the earlier stage of relationship with their
partners and later on give up on using condoms. An-
other possible justification to this finding could be
that many of the condom users knew their HIV status
(positive) and make use of condoms to protect their
partners.
It was also found that the number of kids dead

had a positive significant effect on HIV infection.
The likelihood of getting infected with HIV for men
and women who had one or more of their children
dead was higher than that of those whom none of
their children died. This might imply that kids could
have been infected by their mothers. With respect to
this outcome, the Ministry of Health and Social Ser-
vices should redouble its efforts in the implementa-
tion of prevention of mother-to-child transmission of
HIV/AIDS programmes until the mother to child
transmission rate which was about 2% in 2013 [29]
drops to 0%.
With respect to sexual behaviour or biological char-

acteristics such as sexual activity, age at first sex and
STI, this study has found that these characteristics of
sexual or biological behaviour are associated with
HIV infection. This result could be used to identify

groups with high risk where greater efforts should be
directed.
In disease mapping, the identification of areas cor-

related with high risk proves to be useful in design-
ing preventive and intervention strategies such as
HIV testing campaign, accessibility and use of con-
doms, antiretroviral treatment, and efficient budget
allocation. According to the findings of this study,
great efforts in terms of primary and secondary HIV
interventions should be concentrated to constituen-
cies in the northern part of Namibia.
This study had made use of shared component

through the SPDE approach to analyse jointly the
two sources of data and it presented two major
strengths. Firstly, the joint modelling approach de-
veloped in this study allowed to combine two data
sources that are available at different spatial levels in
a single model. Secondly, unlike other studies that
assumed a same underlying spatial process for differ-
ent sources, with the bivariate model developed it is
possible to specify different spatial processes (e.g. a
Poisson and Bernoulli processes) through the link
function.
A number of significant weaknesses of this study

are acknowledged. Firstly, due to confidentiality is-
sues, the positions of HIV cases were random dis-
placed in the NDHS data source. This study did not
take into account the bias that might be induced by
such displacements. Therefore, the interpretation of
the study findings should take into account this limi-
tation. Secondly, the missingness is quite common in
NDHS and NHSS data sets. This might somehow
distort the geographical distribution pattern of dis-
ease. Nevertheless, we hope that the spatial smooth-
ing approach employed in this study might have
lessened an aberrant.

Conclusion
This study had shown determinants of HIV infection
in Namibia and had revealed areas at high risk of
HIV infection through HIV prevalence mapping. The
findings from this study and the prevalence maps
produced could be used by the Ministry of Health
and Social Services and any health policy makers to
identify groups of people in need of HIV support
and where they live in order to efficiently allocate
resources that are increasingly becoming scarce.
Moreover, the study had used a bivariate modelling
approach that helped dealing with spatially misa-
ligned data. Additionally, the study has shown that
the prediction of HIV prevalence using the DHS
data source can be enhanced by jointly modelling
other HIV data such as NHSS data.
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Appendix 1

Table 5 Observed HIV prevalence per constituency and per gender
Region Constituency % Prevalence

(Men)
% prevalence
(Women)

Combined %
Prevalence

Caprivi Kabe 12.90 35.29 24.62

Katima Mulilo Rural 7.50 23.81 15.85

Katima Mulilo
Urban

22.86 40.24 32.24

Kongola 5.26 24.00 15.91

Linyanti 22.22 25.00 23.81

Sibinda 12.00 32.00 22.00

Erongo Arandis 6.67 7.69 7.14

Daures 0.00 0.00 0.00

Karibib 12.50 15.15 13.85

Omaruru 17.78 27.27 21.79

Swakopmund 14.17 14.29 14.23

Walvis Bay Rural 10.91 20.83 16.54

Walvis Bay Urban 9.72 7.79 8.72

Hardap Gibeon 4.17 12.00 8.16

Mariental Rural 12.50 9.68 10.91

Mariental Urban 9.09 12.90 10.94

Rehoboth East
Urban

7.50 6.12 6.74

Rehoboth Rural 12.50 5.56 8.82

Rehoboth West
Urban

0.00 4.55 2.27

Karas Berseba 0.00 16.67 9.38

Karasburg 12.50 19.05 16.22

Keetmanshoop
Rural

0.00 6.25 3.23

Keetmanshoop
Urban

12.00 14.89 13.40

Luderitz 16.67 15.63 16.07

Oranjemund 3.57 3.85 3.70

Kavango Kahenge 14.29 16.44 15.65

Kapako 13.16 8.16 10.34

Mashare 0.00 8.33 3.70

Mpungu 6.25 22.50 15.28

Mukwe 22.50 18.00 20.00

Ndiyona 4.00 15.79 11.11

Rundu Rural East 9.38 25.49 19.28

Rundu Rural West 10.71 17.46 14.29

Rundu Urban 31.58 25.00 27.66

Khomas Katutura Central 7.27 13.41 10.95

Katutura East 0 0 0

Khomasdal North 4.11 3.7 3.91

Moses ||Garoeb 23.3 20.86 22.32

Samora Machel 2.84 10.78 7.64

Soweto 0 20.75 8.94

Tobias Hainyeko 24.02 25 24.43

Windhoek East 0 0 0

Windhoek Rural 13.04 13.04 13.04

Windhoek West 0 2.13 1.34

Kunene Epupa 0 16.67 7.69

Table 5 Observed HIV prevalence per constituency and per gender
(Continued)

Kamanjab 9.52 5.88 7.89

Khorixas 4.76 6.25 5.66

Opuwo 10 12 11.11

Outjo 17.86 11.43 14.29

Sesfontein 15.38 0 7.69

Ohangwena Eenhana 6.9 7.89 7.46

Endola 14.29 22.5 19.67

Engela 10.2 34.25 24.59

Epembe 30 10 18

Ohangwena 16.67 15.79 16.22

Okongo 2.86 12.5 8.79

Omulonga 7.14 20 14.13

Omundaungilo 0 28.57 14.29

Ondobe 2.78 24.19 16.33

Ongenga 8.33 16.22 13.11

Oshikango 4.08 25.97 17.46

Omaheke Aminuis 5.26 5.56 5.41

Epukiro 8.33 0 5.26

Gobabis 10.53 10 10.26

Kalahari 20 4.76 11.11

Otjinene 5.88 4.17 4.88

Otjombinde 0 0 0

Steinhausen 7.14 10 8.33

Omusati Anamulenge 11.76 16.67 14.63

Elim 25 27.78 26.47

Etayi 14.89 15.28 15.13

Ogongo 9.09 20.51 16.39

Okahao 18.75 20.83 20

Okalongo 16.67 21.43 19.81

Onesi 8 14.29 11.32

Oshikuku 0 35.29 15.79

Otamanzi 20 29.63 26.19

Outapi 17.39 22.67 20.66

Ruacana 18.18 12.12 15.58

Tsandi 9.09 30.3 20.66

Oshana Okaku 8.7 22.86 17.24

Okatana 7.69 36.36 20.83

Ompundja 16.67 58.33 44.44

Ondangwa 11.67 28.09 21.48

Ongwediva 8.24 10.42 9.39

Oshakati East 18.18 22.86 20.8

Oshakati West 16.67 18.18 17.58

Uukwiyu 4.17 21.43 13.46

Uuvudhiya 11.76 11.76

Oshikoto Eengondi 17.65 28.21 22.22

Guinas 11.11 7.14 10.17

Okankolo 5.26 22.22 10.71

Olukonda 26.67 4.55 13.51

Omuntele 9.09 26.47 19.64

Omuthiyagwiipundi 19.57 27.08 23.4
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Table 5 Observed HIV prevalence per constituency and per gender
(Continued)

Onayena 10.53 24.32 19.64

Oniipa 17.5 8.77 12.37

Onyaanya 6.25 14.29 10.81

Tsumeb 1.85 6.78 4.42

Otjozondjupa Grootfontein 12.77 17.24 15.24

Okahandja 12.82 17.24 15.46

Okakarara 5.71 7.41 6.45

Omatako 0 5.56 2.56

Otavi 7.14 13.04 9.8

Otjiwarongo 13.19 13.48 13.33

Tsumkwe 12.5 12.5 12.5

Table 6 Observed HIV prevalence per health district/site
Heath district/site Tested Negative Positive Prevalence

Andara 255 204 51 20.00

Aranos 138 122 16 11.59

Eenhana 215 187 28 13.02

Engela 259 200 59 22.78

Gobabis 158 138 20 12.66

Grootfontein 222 191 31 13.96

Karasburg 214 183 31 14.49

Katima Mulilo 375 240 135 36.00

Keetmanshoop 163 140 23 14.11

Khorixas 180 157 23 12.78

Luderitz 278 220 58 20.86

Mariental 191 168 23 12.04

Nankudu 195 164 31 15.90

Nyangana 279 244 35 12.54

Okahandja 195 169 26 13.33

Okahao 228 181 47 20.61

Okakarara 156 142 14 8.97

Okongo 263 217 46 17.49

Omaruru 170 148 22 12.94

Onandjokwe 299 232 67 22.41

Opuwo 155 149 6 3.87

Oshakati 286 234 52 18.18

Oshikuku 306 249 57 18.63

Otjiwarongo 236 202 34 14.41

Outapi 254 225 29 11.42

Outjo 188 167 21 11.17

Rehoboth 154 140 14 9.09

Rundu 303 230 73 24.09

Swakopmund 210 188 22 10.48

Tsandi 277 221 56 20.22

Tsumeb 257 219 38 14.79

Usakos 119 93 26 21.85

Walvisbay 219 176 43 19.63

Windhoek 330 284 46 13.94

Overall 7727 6424 1303 16.86

Table 7 Fixed effects and their 95% credible intervals (CI): Separate
model for NDHS data
Covariate OR 95% CI

β02 0.08 (0.03,0.21)

Place of residence

Rural(Ref) 1.00

Urban 1.57 (1.30, 1.89)

Gender

Female(Ref) 1.00

Male 0.67 (0.58, 0.78)

Head of household

Male (Ref) 1.00

Female 1.14 (0.97, 1.33)

Marital status

Never in union (Ref) 1.00

Maried 0.72 (0.58, 0.89)

Living with a partner 1.43 (1.17, 1.75)

Widowed 1.49 (1.07, 2.05)

Divorced 1.09 (0.67, 1.76)

Separated 1.44 (1.06, 1.95)

Number of kids dead

No child died (Ref) 1.00

one child died 1.86 (1.49, 2.31)

More than one child died 2.74 (1.88, 3.99)

Education

No education (Ref) 1.00

Primary 1.09 (0.87, 1.38)

Secondary 0.85 (0.67, 1.08)

Higher 0.63 (0.41, 0.96)

Wealth index

Poorest (Ref) 1.00

Poorer 1.10 (0.89, 1.36)

Middle 1.00 (0.80, 1.25)

Richer 0.77 (0.60, 1.00)

Richest 0.32 (0.23, 0.46)

Stayed away of home

Did not move away (Ref) 1.00

Moved away 0.93 (0.79, 1.08)

Never had sex (Ref) 1.00

Not active 0.98 (0.90, 1.07)

Active 1.15 (1.06, 1.26)

Age at first sex

Never had sex(Ref) 1.00

<11 1.29 (0.89, 1.96)

12–.14 1.09 (0.68, 1.76)

15–.17 1.49 (1.01, 2.23)

>18 & at first union 1.28 (0.87, 1.92)

Condom used

No (Ref) 1.00

Yes 1.78 (1.53, 2.07)

Had STI in last 12 months

No (Ref)

Yes 1.06 (0.96, 1.16)
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Appendix 2

Table 8 Fixed effects and their 95% credible intervals (CI):
Separate model for NHSS data

Covariate OR 95% CI

β01 0.12 (0.09,0.17)

Prima-gravida(Ref) 1.00

Multi-gravida 1.89 (1.52,2.34)

(a)

-0.5
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(b)
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Fig. 6 Posterior means of random effects from univariate models: (a) Spatial random effects (NHSS data); (b) spatial random effects (NDHS data)
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