Tatangelo G, McCabe M, Campbell S, Szoeke C. Gender, marital status and longevity. Maturitas. 2017;100:64–9. https://doi.org/10.1016/j.maturitas.2017.03.002.
Article
PubMed
Google Scholar
American Census Bureau. Number of single-person households in the U.S. from 1960 to 2017 (in millions). 2017. https://www.statista.com/statistics/242022/number-of-single-person-households-in-the-us/. Accessed 21 Sept 2019.
National Bureau of Statistics. China statistical yearbook 2017. http://www.xiaze.org/2017/. Accessed 21 Sept 2019.
Waite LJJD. Does marriage matter? Demography. 1995;32:483–507.
Article
CAS
PubMed
Google Scholar
Hu YR, Goldman NJD. Mortality differentials by marital status: an international comparison. Demography. 1990;27:233–50.
Article
CAS
PubMed
Google Scholar
Wyke S, Ford G. Competing explanations for associations between marital status and health. Soc Sci Med. 1992;34:523–32.
Article
CAS
PubMed
Google Scholar
Umberson D. Gender, marital status and the social control of health behavior. Soc Sci Med. 1992;34:907–17.
Article
CAS
PubMed
Google Scholar
Chin B, Murphy MLM, Janicki-Deverts D, Cohen S. Marital status as a predictor of diurnal salivary cortisol levels and slopes in a community sample of healthy adults. Psychoneuroendocrinology. 2017;78:68–75. https://doi.org/10.1016/j.psyneuen.2017.01.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews K, Schwartz J, Cohen S, Seeman T. Diurnal cortisol decline is related to coronary calcification: CARDIA study. Psychosom Med. 2006;68:657–61.
Article
CAS
PubMed
Google Scholar
Dekker MJ, Koper JW, Aken MOV, et al. Salivary cortisol is related to atherosclerosis of carotid arteries. J Clin Endocrinol Metab. 2008;93:3741–7. https://doi.org/10.1210/jc.2008-0496.
Article
CAS
PubMed
Google Scholar
Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2013;30:S163–S70.
CAS
Google Scholar
Sephton SE, Lush E, Dedert EA, et al. Diurnal cortisol rhythm as a predictor of lung cancer survival. J Natl Cancer Inst. 2000;92:994–1000. https://doi.org/10.1016/j.bbi.2012.07.019.
Article
CAS
PubMed
Google Scholar
Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Clinical review: the pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94:2692–701. https://doi.org/10.1210/jc.2009-0370.
Article
CAS
PubMed
Google Scholar
Brunner EJ, Hemingway H, Walker BR, et al. Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome. Circulation. 2002;106:2659–65.
Article
CAS
PubMed
Google Scholar
Stringhini S, Carmeli C, Jokela M, et al. Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1·7 million men and women. Lancet. 2017;389:1229–37. https://doi.org/10.1016/S0140-6736(16)32380-7.
Article
PubMed
PubMed Central
Google Scholar
Brunner E. Commentary: education, education, education. Int J Epidemiol. 2001;30:1126–8.
Article
CAS
PubMed
Google Scholar
Leong DP, Joseph PG, Mckee M, et al. Reducing the global burden of cardiovascular disease, part 2: prevention and treatment of cardiovascular disease. Circ Res. 2017;121:695. https://doi.org/10.1161/CIRCRESAHA.117.311849.
Article
CAS
PubMed
Google Scholar
Beauchamp A, Peeters A, Wolfe R, et al. Inequalities in cardiovascular disease mortality: the role of behavioural, physiological and social risk factors. J Epidemiol Community Health. 2010;64:542–8. https://doi.org/10.1136/jech.2009.094516.
Article
PubMed
Google Scholar
Wong CW, Kwok CS, Narain A, et al. Marital status and risk of cardiovascular diseases: a systematic review and meta-analysis. Heart. 2018. https://doi.org/10.1136/heartjnl-2018-313005.
Article
PubMed
Google Scholar
Eaker ED, Sullivan LM, Kellyhayes M, D'Agostino RB Sr, Benjamin E. Marital status, marital strain, and risk of coronary heart disease or total mortality: the Framingham offspring study. Psychosom Med. 2007;69:509.
Article
PubMed
Google Scholar
Breeze E, Sloggett A, Fletcher A. Socioeconomic and demographic predictors of mortality and institutional residence among middle aged and older people: results from the longitudinal study. J Epidemiol Community Health. 1999;53:765–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuhrer R, Dufouil C, Antonucci TC, et al. Psychological disorder and mortality in French older adults: do social relations modify the association? Am J Epidemiol. 1999;149:116–26.
Article
CAS
PubMed
Google Scholar
Robards J, Evandrou M, Falkingham J, Vlachantoni A. Marital status, health and mortality. Maturitas. 2012;73:295–9. https://doi.org/10.1016/j.maturitas.2012.08.007.
Article
PubMed
PubMed Central
Google Scholar
Manzoli L, Villari P, Pirone GM, Boccia A. Marital status and mortality in the elderly: a systematic review and meta-analysis. Soc Sci Med. 2007;64:77–94. https://doi.org/10.1016/j.socscimed.2006.08.031.
Article
PubMed
Google Scholar
Kilpi F, Konttinen H, Silventoinen K, Martikainen P. Living arrangements as determinants of myocardial infarction incidence and survival: a prospective register study of over 300,000 Finnish men and women. Soc Sci Med. 2015;133:93–100. https://doi.org/10.1016/j.socscimed.2015.03.054.
Article
PubMed
Google Scholar
Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.
Article
CAS
PubMed
Google Scholar
GA Wells, B Shea, D O'Connell, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses http://www.evidencebasedpublichealth.de/download/Newcastle_Ottowa_Scale_Pope_Bruce.pdf. Accessed 20 Sept 2019.
Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ. 2006;332:73–6. https://doi.org/10.1136/bmj.38678.389583.7C.
Article
PubMed
PubMed Central
Google Scholar
Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.
Article
PubMed
Google Scholar
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60. https://doi.org/10.1136/bmj.327.7414.557.
Article
PubMed
PubMed Central
Google Scholar
Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2015;56:455–63.
Article
Google Scholar
Va P, Yang WS, Nechuta S, et al. Marital status and mortality among middle age and elderly men and women in urban Shanghai. PLoS One. 2011;6:e26600. https://doi.org/10.1371/journal.pone.0026600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frisch M, Simonsen J. Marriage, cohabitation and mortality in Denmark: national cohort study of 6.5 million persons followed for up to three decades (1982–2011). Int J Epidemiol. 2013;42:559–78. https://doi.org/10.1093/ije/dyt024.
Article
PubMed
Google Scholar
Nilsson PM, Johansson SE, Sundquist J. Low educational status is a risk factor for mortality among diabetic people. Diabet Med. 1998;15:213–9.
Article
CAS
PubMed
Google Scholar
Molloy GJ, Stamatakis E, Randall G, et al. Marital status, gender and cardiovascular mortality: Behavioural, psychological distress and metabolic explanations. Soc Sci Med. 2009;69:223–8. https://doi.org/10.1016/j.socscimed.2009.05.010.
Article
PubMed
PubMed Central
Google Scholar
Dupre ME, Beck AN, Meadows SO. Marital trajectories and mortality among US adults. Am J Epidemiol. 2009;170:546. https://doi.org/10.1093/aje/kwp194.
Article
PubMed
PubMed Central
Google Scholar
Scafato E, Galluzzo L, Gandin C, et al. Marital and cohabitation status as predictors of mortality: a 10-year follow-up of an Italian elderly cohort. Soc Sci Med. 2008;67:1456–64. https://doi.org/10.1016/j.socscimed.2008.06.026.
Article
PubMed
Google Scholar
Stimpson JP, Kuo YF, Ray LA, Raji MA, Peek MK. Risk of mortality related to widowhood in older Mexican Americans. Ann Epidemiol. 2007;17:313–9.
Article
PubMed
PubMed Central
Google Scholar
Ikeda A, Iso H, Toyoshima H, et al. Marital status and mortality among Japanese men and women: the Japan collaborative cohort study. BMC Public Health. 2007;7:1–7.
Article
Google Scholar
Smith KR, Waitzman NJ. Effects of marital status on the risk of mortality in poor and non-poor neighborhoods. Ann Epidemiol. 1997;7:343–9.
Article
CAS
PubMed
Google Scholar
Jaffe DH, Eisenbach Z, Neumark YD, Manor O. Individual, household and neighborhood socioeconomic status and mortality: a study of absolute and relative deprivation. Soc Sci Med. 2005;60:989–97.
Article
PubMed
Google Scholar
Nilsson PM, Nilsson JA, Ostergren PO, Berglund G. Social mobility, marital status, and mortality risk in an adult life course perspective: the Malmö preventive project. Scand J Public Health. 2005;33:412.
Article
PubMed
Google Scholar
Hurt LS, Ronsmans CS, Saha S. Effects of education and other socioeconomic factors on middle age mortality in rural Bangladesh. J Epidemiol Community Health. 2004;58:315–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strand BH, Tverdal A. Can cardiovascular risk factors and lifestyle explain the educational inequalities in mortality from ischaemic heart disease and from other heart diseases? 26 year follow up of 50 000 Norwegian men and women. J Epidemiol Community Health. 2004;58:705–9.
Article
PubMed
PubMed Central
Google Scholar
Malyutina S, Bobak M, Simonova G, et al. Education, marital status, and total and cardiovascular mortality in Novosibirsk, Russia: a prospective cohort study. Ann Epidemiol. 2004;14:244–9.
Article
PubMed
Google Scholar
Nagata C, Takatsuka N, Shimizu H. The impact of changes in marital status on the mortality of elderly Japanese. Ann Epidemiol. 2003;13(4):218–22.
Article
PubMed
Google Scholar
Johnson NJ, Backlund E, Sorlie PD, Loveless CA. Marital status and mortality: the national longitudinal mortality study. Ann Epidemiol. 2000;10:224–38.
Article
CAS
PubMed
Google Scholar
Iwasaki M, Otani T, Sunaga R, et al. Social networks and mortality based on the Komo-Ise cohort study in Japan. Int J Epidemiol. 2002;31:1208–18.
Article
PubMed
Google Scholar
Robles TF, Kiecolt-Glaser JK. The physiology of marriage: pathways to health. Physiol Behav. 2003;79:409–16.
Article
CAS
PubMed
Google Scholar
Zhang Z, Mark D. Hayward. gender, the marital life course, and cardiovascular disease in late midlife. J Marriage Fam. 2010;68:639–57.
Article
Google Scholar
Yan XY, Huang SM, Huang CQ, Wu WH, Qin Y. Marital status and risk for late life depression: a meta-analysis of the published literature. J Int Med Res. 2011;39:1142. https://doi.org/10.1177/147323001103900402.
Article
PubMed
Google Scholar
Huang MF, Yen CF, Lung FW. Moderators and mediators among panic, agoraphobia symptoms, and suicidal ideation in patients with panic disorder. Compr Psychiatry. 2010;51:243–9. https://doi.org/10.1016/j.comppsych.2009.07.005.
Article
PubMed
Google Scholar
Goldman NJD. Marriage selection and mortality patterns: inferences and fallacies. Demography. 1993;30:189–208.
Article
CAS
PubMed
Google Scholar
Manfredini R, De GA, Tiseo R, et al. Marital status, cardiovascular diseases, and cardiovascular risk factors: a review of the evidence. J Women's Health (Larchmt). 2017;26:624–32. https://doi.org/10.1089/jwh.2016.6103.
Article
Google Scholar
Kajantie E, Phillips DIJP. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. 2006;31:151–78. https://doi.org/10.1016/j.psyneuen.2005.07.002.
Article
CAS
PubMed
Google Scholar
Kudielka BM, Kirschbaum C. Sex differences in HPA axis responses to stress: a review. Biol Psychol. 2005;69:113–32. https://doi.org/10.1016/j.biopsycho.2004.11.009.
Article
PubMed
Google Scholar
Verma R, Balhara YP, Gupta CS. Gender differences in stress response: role of developmental and biological determinants. Ind Psychiatry J. 2012;20:4–10. https://doi.org/10.4103/0972-6748.98407.
Article
Google Scholar
Yang XP, Reckelhoff JF. Estrogen, hormonal replacement therapy and cardiovascular disease. Curr Opin Nephrol Hypertens. 2012;20:133–8. https://doi.org/10.1097/MNH.0b013e3283431921.
Article
CAS
Google Scholar
Wang X, Smith GI, Patterson BW, et al. Testosterone increases the muscle protein synthesis rate but does not affect very-low-density lipoprotein metabolism in obese premenopausal women. Am J Physiol Endocrinol Metab. 2012;302:E740–6. https://doi.org/10.1152/ajpendo.00533.2011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engström G, Hedblad B, Rosvall M, Janzon L, Lindgärde F. Occupation, marital status, and low-grade inflammation: mutual confounding or independent cardiovascular risk factors? Arterioscler Thromb Vasc Biol. 2006;26:643–8. https://doi.org/10.1161/01.ATV.0000200100.14612.bb.
Article
CAS
PubMed
Google Scholar
Evans MR, Goldsmith AR. The effects of testosterone on antibody production and plumage coloration in male house sparrows (Passer domesticus). Behav Ecol Sociobiol. 2000;47:156–63.
Article
Google Scholar
Pinheiro AO, Pereira VL Jr, Baltatu OC, Campos LA. Cardiac autonomic dysfunction in elderly women with myocardial infarction. Curr Med Res Opin. 2015;31:1849–54. https://doi.org/10.1185/03007995.2015.1074065.
Article
Google Scholar
Listed N. Marriage and men's health. Harv Mens Health Watch. 2010;14:1–3.
Google Scholar
Addis ME, Mahalik JR. Men, masculinity, and the contexts of help seeking. Am Psychol. 2003;58:5–14.
Article
PubMed
Google Scholar
Kendler KS, Myers J, Prescott CA. Sex differences in the relationship between social support and risk for major depression: a longitudinal study of opposite-sex twin pairs. Am J Psychiatry. 2005;162:250–6. https://doi.org/10.1176/appi.ajp.162.2.250.
Article
PubMed
Google Scholar
Staehelin K, Schindler C, Spoerri A, Zemp Stutz E. Swiss National Cohort Study Group. Marital status, living arrangement and mortality: does the association vary by gender? J Epidemiol Community Health. 2012;66:e22. https://doi.org/10.1136/jech.2010.128397.
Article
PubMed
Google Scholar
Gross SM, Gary TL, Browne DC, LaVeist TA. Gender differences in body image and health perceptions among graduating seniors from a historically black college. J Natl Med Assoc. 2005;97:1608–19.
PubMed
PubMed Central
Google Scholar
Mccreary DR, Sadava SW. Gender differences in relationships among perceived attractiveness, life satisfaction, and health in adults as a function of body mass index and perceived weight. Psychol Men Masculinity. 2001;2:108–16.
Article
Google Scholar
Costa MG, Petrucci GD, Lessa HB. Change in body weight and body image in young adults: a longitudinal study. BMC Public Health. 2015;15:1–7. https://doi.org/10.1186/s12889-015-1579-7.
Article
Google Scholar
O'Neil A, Scovelle AJ, Milner AJ, Kavanagh A. Gender/sex as a social determinant of cardiovascular risk. Circulation. 2018;137:854–64. https://doi.org/10.1161/CIRCULATIONAHA.117.028595.
Article
PubMed
Google Scholar
Redondo-Sendino Á, Guallar-Castillón P, Banegas JR, Rodríguez-Artalejo F. Gender differences in the utilization of health-care services among the older adult population of Spain. BMC Public Health. 2006;6:1–9. https://doi.org/10.1186/1471-2458-6-155.
Article
Google Scholar
Wilsnack RW, Wilsnack SC, Kristjanson AF, Vogeltanz-Holm ND, Gmel G. Gender and alcohol consumption: patterns from the multinational GENACIS project. Addiction. 2010;104:1487–500. https://doi.org/10.1111/j.1360-0443.2009.02696.x.
Article
Google Scholar
Bots SH, Peters SAE, Woodward M. Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Glob Health. 2017;2:e000298. https://doi.org/10.1136/bmjgh-2017-000298.
Article
PubMed
PubMed Central
Google Scholar
Pan JJ, Fallon MB. Gender and racial differences in nonalcoholic fatty liver disease. World J Hepatol. 2014;6:274–83. https://doi.org/10.4254/wjh.v6.i5.274.
Article
PubMed
PubMed Central
Google Scholar
Yeluru A, Nguyen P, Le AK, et al. Gender differences in outcomes of cirrhosis in a large cohort of patients in the United States. Gastroenterology. 2017;152:S1142. https://doi.org/10.1016/S0016-5085(17)33835-0 Accessed 18 Sept 2019.
Article
Google Scholar
Perreault L, Ma Y, Dagogo-Jack S, et al. Sex differences in diabetes risk and the effect of intensive lifestyle modification in the diabetes prevention program. Diabetes Care. 2008;31:1416–21. https://doi.org/10.2337/dc07-2390.
Article
CAS
PubMed
PubMed Central
Google Scholar
RydeN L, Grant PJ, Anker SD, et al. ESC guidelines on diabetes, pre-diabetes and diseases of the cardiovascular system developed in cooperation with the EASD. Kardiol Pol. 2013;71(Suppl 11(XI)):S319–94. https://doi.org/10.5603/KP.2013.0289.
Article
PubMed
Google Scholar
Regensteiner JG, Golden S, Huebschmann AG, et al. Sex differences in the cardiovascular consequences of diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2015;132:2424–47. https://doi.org/10.1161/CIR.0000000000000343.
Article
PubMed
Google Scholar
Orth-Gomer K, Wamala SP, Horsten M, et al. Marital stress worsens prognosis in women with coronary heart disease: the Stockholm female coronary risk study. JAMA. 2000;284:3008–14.
Article
CAS
PubMed
Google Scholar
Lyons JG, Cauley JA, Fredman L. The effect of transitions in caregiving status and intensity on perceived stress among 992 female caregivers and noncaregivers. J Gerontol A Biol Sci Med Sci. 2015;70:1018–23. https://doi.org/10.1093/gerona/glv001.
Article
PubMed
PubMed Central
Google Scholar